摘要
人用经验是中医药临床实践的总结,也是中药新药研发中评价中药安全性、有效性和临床价值的重要数据来源。收集和总结中药人用经验数据,应用相关统计分析,形成可用于评价的证据是中药人用经验研究关键一环。该文尝试归纳并探讨目前中药人用经验的临床数据特点和统计分析方法,对数据类型、结局评价、偏倚评估、混杂因素及缺失值的处理逐一进行总结。该文强调中药人用经验的数据分析对于中医药证据形成的重要性,同时提出了目前的难点,如数据质量不高,内部差异性大;缺少个体化数据处理方法;缺少“病证结合”中医特色数据的方法等。相信随着相关方法的规范化和科学化,中药人用经验数据能为中药新药的研发提供有力的证据。
Application experience in humans,a summary of the clinical practice of traditional Chinese medicine(TCM),serves as an important data source for evaluating the safety,effectiveness,and clinical value of drugs in the development of new Chinese medicine.The collected data serving as the evaluation evidence through statistical analysis are critical to the research on the application experience in humans.This article summarized and analyzed the data characteristics and statistical methodology of application experience of Chinese medicine in humans,and concluded the data types,outcome evaluation,bias evaluation,confounding factors,and missing values.Furthermore,the article emphasized the importance of data analysis of application experience of Chinese medicine in humans for TCM evidence and put forward the current difficulties,such as low data quality and large internal bias,lack of individualized data processing methods,and lack of methods for"disease-syndrome combination"data.We believe that with the development of methodology,the application experience of Chinese medicine in humans can strongly support the development of new drugs in TCM.
作者
鲁路
倪世豪
黄育生
龙文杰
唐雅琴
王陵军
杨忠奇
LU Lu;NI Shi-hao;HUANG Yu-sheng;LONG Wen-jie;TANG Ya-qin;WANG Ling-jun;YANG Zhong-qi(the First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510407,China;Lingnan Medical Research Center,Guangzhou University of Chinese Medicine,Guangzhou 510405,China)
出处
《中国中药杂志》
CAS
CSCD
北大核心
2022年第13期3681-3685,共5页
China Journal of Chinese Materia Medica
基金
国家重点研发计划项目(2018YFC1707401,2020YFC0845300)
国家自然科学基金项目(81803928)
广东省自然科学基金项目(2021A1515011457)
广州市科技计划项目(202102020269)。
关键词
中药人用经验
中医药
数据类型
统计方法
application experience of Chinese medicine in humans
traditional Chinese medicine
data type
statistical methodology