期刊文献+

Cu纳米颗粒负载N掺杂生物质炭及其在锌空气电池中的应用 被引量:1

Cu nanoparticles in N-doped biomass carbon for Zn-air battery
下载PDF
导出
摘要 开发非贵金属氧还原催化剂是提高锌空气电池效率的关键。因此,合成了N掺杂生物质炭负载Cu纳米颗粒,碳源为小麦秸秆,此催化剂具有优异的电催化活性和氧还原反应(ORR)的稳定性。Cu-N-C电催化剂的起始过电位为0.89V(vs.RHE),半波电位为0.79V(vs.RHE),氧还原反应的极限电流密度为4.92mA/cm^(2)。作为空气阴极,组装好的锌空气电池表现出较小的充放电电压间隙(在10mA/cm^(2)条件下为0.71V)和214mW/cm^(2)的高功率密度,优于商用Pt/C催化剂。此外,锌空气电池具有出色的耐用性。 Developing non-precious-metal oxygen reduction(ORR) catalysts is major task for promoting the reaction efficiency of Zn-air batteries.An advanced Cu nanoparticles derived from N-doped carbon(low-cost wheat straw) with superior electrocatalytic activity and stability toward oxygen reduction reaction(ORR) was synthesized.Cu-N-C electrocatalyst that achieved the onset potential of 0.89 V(vs.RHE) and half wave potential of 0.79 V(vs.RHE) as well as large diffusion-limited current density of 4.92 mA/cm^(2) for the oxygen reduction reaction.As the air-cathode,the assembled aqueous Zn-air battery exhibited small charge-discharge voltage gap(0.71 V@10 mA/cm^(2)) and high power density of 214 mW/cm^(2),outperforming the commercial Pt/C catalyst.Additionally,the Zn-air battery exhibited excellent durability.
作者 刁金香 张超 张敏华 牛芳芳 刘肖杰 Diao Jinxiang;Zhang Chao;Zhang Minhua;Niu Fangfang;Liu Xiaojie(Department of Aeronautical Engineering,Aeronautical Polytechnic Institute,Xi'an 710089;Key Laboratory of Synthetic and Natural Functional Molecule Chemistry(Ministry of Education),College of Chemistry&Materials Science,Northwest University,Xi'an 710069)
出处 《化工新型材料》 CAS CSCD 北大核心 2022年第7期273-276,共4页 New Chemical Materials
基金 国家自然科学基金面上项目(22075227) 陕西省自然科学基金项目(2021JQ-889)。
关键词 Cu-N-C电催化剂 锌空气电池 氧还原反应 生物质 Cu-N-C electrocatalyst Zn-air battery oxygen reduction reaction biomass
  • 相关文献

参考文献1

二级参考文献39

  • 1Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257 -5275.
  • 2Wang, J.; Wu, H. H.; Gao, D. F.; Miao, S.; Wang, G. X.; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 2015, 13, 387-396.
  • 3Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.
  • 4Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.
  • 5Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C- functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 125, 1067-1064.
  • 6Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal- free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444-452.
  • 7Jiang, H. L.; Yao, Y. F.; Zhu, Y. H.; Liu, Y. Y.; Su, Y. H.; Yang, X. L.; Li, C. Z. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interface 2015, 7, 21511-21520.
  • 8Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. ACS Chem. Res. 2013, 46, 1878-1889.
  • 9Xu, J. Y.; Aili, D.; Li, Q. F.; Christensen, E.; Jensen, J. O.; Zhang, W.; Hansen, M. K.; Liu, G. Y.; Wang, X. D.; Bjerrum, N. J. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ. Sci. 2014, 7, 829-830.
  • 10Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172-2192.

共引文献11

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部