摘要
使用传染病传播动力学模型预测重大新发突发传染病时,极易发生因早期统计数据与实际不符以及对传播特征的认识不足等原因而造成参数估计偏差,导致预测、分析结果不准确。本文结合新冠疫情肺炎传播特征改进SEIR模型,提出了考虑无症状感染者、自愈人群以及无效接触人群的多阶段SEIRr模型,并使用批量梯度下降算法进行参数学习,针对不同场景下的多个国家与地区的传播过程进行预测。实验结果表明,SEIRr模型拟合用数据更少,对数据质量要求更低,预测效果更好;而基于有限早期数据的多阶段模型能有效刻画新发突发传染病防控和治疗手段不断优化的过程,具有较好的拟合预测效果和通用性。
Traditional compartment models of infectious diseases are often limited in predicting emerging major contagious diseases with parameter estimation error and inaccurate predictions and analysis,largely due to the lack of reliable epidemiological data and that the knowledge of the transmission mechanism and treatment is unclear in the early stages of the outbreak.In this article,we propose a modified SEIR model based on the transmission mechanism of COVID-19,SEIRr,considering the asymptomatic infections,self-healing populations,and invalid contacts,model the spreading of COVID-19 in different cities and countries.The batch gradient descent algorithm is used to learn the model’s parameters.Experimental results indicate that SEIRr model yields improved prediction with less fitting data and has lower requirements for data quality;the multi-stage model based on limited early data has better prediction performance and universality,which can effectively characterize the evolution of COVID-19 mitigation measurements and treatment options.
作者
赛斌
宋兵
谭索怡
欧朝敏
周涛
张伟
吕欣
SAI Bin;SONG Bing;TAN Suo-yi;OU Chao-min;ZHOU Tao;ZHANG Wei;LU Xin(College of Systems Engineering,National University of Defense Technology,Changsha 410073,China;Big Data Research Center,University of Electronic Science and Technology of China,Chengdu 611731,China;West China Biomedical Big Data Center,West China Hospital,Sichuan University,Chengdu 610041,China)
出处
《工程管理科技前沿》
CSSCI
北大核心
2022年第4期24-31,共8页
Frontiers of Science and Technology of Engineering Management
基金
国家杰出青年科学基金资助项目(72025405)
国家自然科学基金“新型冠状病毒溯源、致病及防治的基础研究”专项资助项目(82041020)
国家社会科学基金重大资助项目(22ZDA102)。