期刊文献+

A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

下载PDF
导出
摘要 In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF(Electric Field)sensors.Currently,an EF sensor or EPS(Electric Potential Sensor)system is attracting attention as a next-generationmotion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing;thus,it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第6期5413-5425,共13页 计算机、材料和连续体(英文)
基金 This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).
  • 相关文献

参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部