期刊文献+

物候窗口和多源中高分辨率影像的稻虾田提取 被引量:7

Phenology windows and multi-source medium-/high-resolution image extraction for rice-crayfish paddy fields mapping
原文传递
导出
摘要 由于显著的经济效益和生态效益,近年来稻虾共作模式分布面积迅猛扩张。准确获取稻虾田空间分布信息,对于水稻种植结构调整、产量估算和水资源管理具有重要意义。本文以“小龙虾之乡”——湖北省潜江市为研究区域,基于Google Earth Engine平台协同Landsat 7/8和Sentinel-2卫星数据,通过分析稻虾田的农业耕作管理和季相节律特征,提取了稻虾田区别其他农作物的关键“水淹”信号和“植被”信号。基于实地稻虾田样本统计分析关键特征的阈值,构建稻虾田规则集识别模型,提取了湖北省潜江市2019年稻虾田空间分布。最后,基于实地样本验证该物候窗口特征方法的精度,并评估和比较了该方法与随机森林和基于水体季相差异方法的表现。结果表明:物候窗口1月1日—4月30日内的水淹信号(LSWI>NDVI或EVI)、物候窗口7月15日—9月30日内的植被信号(NDVI或EVI>LSWI)和物候窗口11月10日—12月31日内的水淹信号是稻虾田遥感识别的典型特征。基于该方法提取的2019年潜江市稻虾田制图精度和用户精度分别为90.74%、94.69%,显著高于水体季相差异方法和随机森林方法的精度。基于关键物候窗口的稻虾田提取方法具有较高的泛化能力,能以较少的实地样本进行时空尺度的延展,从而为大尺度长时序稻虾田遥感制图提供重要的方法支撑。 Rice-crayfish co-culture is a kind of comprehensive ecological agriculture pattern.Rice-crayfish co-culture has expanded rapidly in China in the past decade due to its outstanding ecological and economic benefits.The accurate spatial distribution information of this newly emerging agricultural pattern is crucial for growth monitoring,yield estimation,and water resource management.However,most studies have focused on field-level research on the farmland ecosystem,and rice-crayfish mapping at regional or larger scales has received less attention.In this study,Qianjiang City in Hubei Province,known as the“hometown of crayfish”was selected as the test area.The cloud computing approach was used for all available Landsat 7/8 and Sentinel-2 imagery in 2019 with the Google Earth Engine(GEE)platform.By analyzing farming characteristics and the spectral curves of rice-crayfish fields,we identified the crucial phenology windows and classification features(i.e.,flooding and vegetation signals)for rice-crayfish mapping.On the basis of the key phenological characteristics and associated frequency thresholds derived from field samples,we developed a rule-based algorithm for rice-crayfish mapping and generated the rice-crayfish map of Qianjiang City in 2019.To further evaluate the potential of our proposed method,we compared it with the random forest method and a method based on seasonal differences of water bodies.The spectral analysis of time series images showed that the unique phenological characteristics of rice-crayfish co-culture were flooding signal(LSWI>NDVI or LSWI>EVI)in phenology window 1(from January 1 to April 30),vegetation signal(NDVI>LSWI or EVI>LSWI)in phenology window 2(from July 15 to September 30),and flooding signal in phenology window 3(from November 10 to December 31).With the mapping results,the total area for rice-crayfish planting in Qianjiang City in 2019 was estimated to 575.58 km2,and rice-crayfish plots were mainly distributed in the southwest.The producer’s accuracy of the classification result was 90.74%,the user’s accuracy was 94.69%,and the overall accuracy was 95.23%.The method based on phenology window features had fewer commission errors compared with the random forest method and fewer omission errors compared with the method based on water body seasonal differences.Among the three methods,the proposed method presented the highest overall classification accuracy.The rice-crayfish mapping method based on phenology windows,flooding signal,and vegetation signal showed high separability.The method based on phenology windows can be easily generalized to other regions and other images because of its strong physical interpretation for rice-crayfish.On the one hand,this method has relatively low dependence on training samples.On the other hand,as long as the key phenology window can be obtained,other medium-high resolution images,such as GF-1 and GF-6,can achieve high-accuracy mapping results for rice-crayfish.Therefore,the method based on phenology windows can be effectively extended to large areas and long time series.It can provide essential information for rice production management and decision-making in the crayfish industry.
作者 魏浩东 杨靖雅 蔡志文 陈云坪 张馨予 徐保东 胡琼 WEI Haodong;YANG Jingya;CAI Zhiwen;CHEN Yunping;ZHANG Xinyu;XU Baodong;HU Qiong(College of Resources and Environment,Macro Agriculture Research Institute,Huazhong Agricultural University,Wuhan 430070,China;College of Plant Science&Technology,Huazhong Agricultural University,Wuhan 430070,China;State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China;College of Urban and Environmental Sciences,Central China Normal University,Wuhan 430079,China)
出处 《遥感学报》 EI CSCD 北大核心 2022年第7期1423-1436,共14页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:41901380,42001303) 中央高校基本科研业务费专项基金(编号:2662018QD066,CCNU20QN032) 湖北省自然科学基金(编号:2019CFC848) 遥感科学国家重点实验室开放基金(编号:OFSLRSS202022,OFSLRSS201914)。
关键词 遥感 稻虾田 作物提取 Google Earth Engine 物候窗口 LANDSAT Sentinel-2 remote sensing rice-crayfish crop extraction Google Earth Engine phenology window Landsat Sentinel-2
  • 相关文献

参考文献8

二级参考文献69

  • 1陈水森,柳钦火,陈良富,李静,刘强.粮食作物播种面积遥感监测研究进展[J].农业工程学报,2005,21(6):166-171. 被引量:106
  • 2李静,柳钦火,刘强,陈良富,柏军华,李少昆.基于波谱知识的CBERS-02卫星遥感图像棉花像元识别方法研究[J].中国科学(E辑),2005,35(B12):141-155. 被引量:12
  • 3林文鹏,王长耀,储德平,牛铮,钱永兰.基于光谱特征分析的主要秋季作物类型提取研究[J].农业工程学报,2006,22(9):128-132. 被引量:51
  • 4Alcantara C, Kuemmerle T, Prishehepov A V and Radeloff V C. 2012. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 124:334 -347 [DOI: 10. 1016/j. rse. 2012.05. 019].
  • 5Chavez Jr P S. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multi-spectral data. Remote Sensing of Environment, 24 (3) : 459 - 479 [ DOI : 10. 1016/0034 - 4257 ( 88 ) 90019 - 3 ].
  • 6Gao F, Masek J, Schwaller M and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions On Geoscience and Remote Sensing, 44 (8) : 2207 - 2218 [DOI: 10. ll09/TGRS. 2006. 872081 ].
  • 7GIS Ag Maps. 2013. Landsat 8 Atmospheric Correction Includes COST, DOS, and TOA reflectance [ EB \ OL~ [" 2014-01-25 ]. http ://www. gisagmaps, eom/landsat-8 -ateo-guide/.
  • 8Hilker T, Wulderb M A, Coopsa N C, Linkee J and McDermide G. 2009. A new data fusion model for high spatial-and temporal-resolu- tion mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113 (8) : 1613 - 1627 [ DOI : 10. 1016/j. rse. 2009.03. 007 ].
  • 9Jacquin A, Sheeren D and Laeombe J P. 2010. Vegetation cover degra- dation assessment in Madagascar savanna based on trend analysis of MODIS NDVI. International Journal of Applied Earth Observation and Geoinformation, 12 ( S1 ) : $3 - $10 [ DOI: 10. 1016/j. jag. 2009.11. O04 ].
  • 10Jsnsson P and Eklundh L. 2004. TIMESAT-A program for analyzing time-series of satellite sensor data. Computers and Geosciences, 30 (8) : 833 - 845 [DOI : 10. 1016/j. cageo. 2004.05. 006.

共引文献400

同被引文献116

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部