期刊文献+

On systematic development of FSI solvers in the context of particle methods 被引量:1

原文传递
导出
摘要 This paper presents a review on state-of-the-art of developments corresponding to fluid-structure interaction(FSI)solvers developed within the context of particle methods.The paper reviews and highlights the potential robustness of entirely Lagrangian meshfree FSI solvers in reproducing FSI corresponding to extreme events and portrays the future perspectives for systematic developments towards reliable engineering applications with respect to rapid advances in technology and emergence of so-called advanced materials that can result in complex and highly non-linear structural responses.Accordingly,the paper highlights the necessity for reproduction of comprehensive structural responses,including viscoelastic,elastoplastic and progressive damages/failures,by the advanced FSI solvers developed within the context of particle methods.In this regard,extensions of the structure model are suggested to be conducted in a variationally consistent framework to ensure stability,accuracy and physical reliability including thermodynamic consistency.The paper reviews basics of mathematical and numerical modelling for entirely Lagrangian meshfree hydroelastic FSI solvers and presents a brief background on extensions of such solvers towards reproducing viscoelastic structural responses.Some preliminary numerical results on structural viscoelasticity achieved by an extended Hamiltonian SPH(HSPH)model are presented.This vision paper also concisely portrays the future perspectives for systematic development of particle-based FSI solvers.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第3期395-407,共13页 水动力学研究与进展B辑(英文版)
基金 The authors would like to express their gratitude to Prof.De-cheng Wan at Shanghai Jiao Tong University for invitation for this vision paper.The first author,A.Khayyer,would like to express his sincere appreciation to Prof.Antonio J.Gil at Swansea University and Dr Chun Hean Lee at the University of Glasgow for discussions regarding viscoelastic and elastoplastic modelling.The authors appreciate the research grants by Japan Society for the Promotion of Science(JSPS)(Grant No.JP18K04368,JP21H01433 and JP21K14250).
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部