期刊文献+

基于SOLO理论在“四翼”角度下的物理教学设计--以“牛顿第二定律”为例

下载PDF
导出
摘要 基于SOLO理论所划分的五个水平制定了牛顿第二定律的教学目标和教学策略:利用生活情境克服前结构水平、单点认知扎实基础、多元理解牛顿第二定律促进综合、达到关联水平学以致用和积极思考主动创新。并举例了能体现不同思维结构水平的习题,以便教师了解学生对知识的掌握情况,帮助教师和学生把握教与学的深度。
出处 《中学理科园地》 2022年第4期24-26,30,共4页 Field of Middle School Science Department
基金 福建师范大学2020年本科教改项目立项:在物理实验课程中培养师范生基于核心素养下的科学思维的探索与实践(I202002014)研究成果。
  • 相关文献

参考文献1

二级参考文献11

  • 1Biggs,J.B,& Collis,K.F..Evaluating the Quality of Learning:the SOLO Taxonomy.New York:Academic Press.1982.
  • 2Biggs,J.B,& Collis,K.F,.Multimodal learning and the quality of intelligent behaviour.In H.Rowe(Ed.),Intelligence,Reconceptualization and Measurement.New Jersey:Laurence Erlbaurn Assoc.1991,pp.57-76.
  • 3Pegg,J..Assessing students' understanding at the primary and secondary level in the mathematical sciences.In J.Izard & M.Stephens(Eds),Reshaping Assessment Practice:Assessment in the Mathematical Sciences Under Challenge.Melbourne:Australian Council of Educational Research.1992,pp.368-385.
  • 4Pegg,J.& Davey,G..Interpreting Student Understanding in Geometry:A synthesis of Two Models.In R.Lehrer & C.Chazan,(Eds),Designing Learning Environments for Developing Understanding of Geometry and Space.New Jersey:Lawrence Erlbaum.1998,pp.109-135.
  • 5Case,R..The Mind' s Staircase:Exploring the conceptual underpinnings of children' s thought and knowledge.New Jersey:Laurence Erlbaum Assoc.1992.
  • 6Fischer,K.W.& Knight,C.C..Cognitive development in real children:Levels and variations.In B.Presseisen(Ed.),Learning and thinking styles:Classroom interaction.Washington:National Education Association.1990,pp.43-67.
  • 7Anderson,K.R..Cognitive psychology and its implications.San Francisco:Freeman.1980.
  • 8Campbell,K,Watson,J.& Collis,K..Volume measurement and intellectual development.Journal of-Structural Learning and Intelligent Systems,11,1992,pp279-298.
  • 9Panizzon,D.L..Senior secondary and early tertiary science students' developmental understandings of diffusion and osmosis:A neo-Piagetian approach.Unpublished thesis for the degree of PhD,University of New England,Armidale,Australia.1999.
  • 10Chick,H.Cognition in the formal modes:research mathematics and the SOLO taxonomy,Mathematics Education Research Journal.1998,Vol.10(2),pp.4-26.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部