期刊文献+

Optimized Hybrid Block Adams Method for Solving First Order Ordinary Differential Equations

下载PDF
导出
摘要 Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第8期2947-2961,共15页 计算机、材料和连续体(英文)
基金 This research was funded by Fundamental Research Grant Scheme(FRGS)under the Ministry of Higher Education Malaysia,grant number with project ref:FRGS/1/2019/STG06/UTP/03/2.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部