期刊文献+

Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques

下载PDF
导出
摘要 This paper presents,a new approach of Medical Image Pixels Clustering(MIPC),aims to trace the dissimilar patterns over the Magnetic Resonance(MR)image through the process of automatically identify the appropriate number of distinct clusters based on different improved unsupervised clustering schemes for enrichment,pattern predication and deeper investigation.The proposed MIPC consists of two stages:clustering and validation.In the clustering stage,the MIPC automatically identifies the distinct number of dissimilar clusters over the gray scale MR image based on three different improved unsupervised clustering schemes likely improved Limited Agglomerative Clustering(iLIAC),Dynamic Automatic Agglomerative Clustering(DAAC)and Optimum N-Means(ONM).In the second stage,the performance of MIPC approach is estimated by measuring Intra intimacy and Intra contrast of each individual cluster in the result of MR image based on proposed validation method namely Shreekum Intra Cluster Measure(SICM).Experimental results showthat the MIPC approach is better suited for automatic identification of highly relative dissimilar clusters over the MR cancer images with higher Intra closeness and lower Intra contrast based on improved unsupervised clustering schemes.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第7期281-299,共19页 计算机、材料和连续体(英文)
基金 This work is supported by Faculty of Science and Technology,University of the Faroe Islands,Faroe Islands,Denmark and REVA University,Bengaluru.
  • 相关文献

参考文献1

二级参考文献149

  • 1M. E Gupta and M. M. Shringirishi, Implementation of brain tumor segmentation in brain mr images using k-means clustering and fuzzy c-means algorithm, International Journal of Computers & Technology, vol. 5, no. 1, pp. 54- 59, 2013.
  • 2D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, E C. Burger, A. Jouvet, B. W. Scheithauer, and E Kleihues, The 2007 who classification of tumours of the central nervous system, Acta Neuropathologica, vol. 114, no. 2, pp. 97-109, 2007.
  • 3Z.-E Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. The Institute of Electrical and Electronics Engineers Press, 2000.
  • 4E Y. Wen, D. R. Macdonald, D. A. Reardon, T. E Cloughesy, A. G. Sorensen, E. Galanis, J. DeGroot, W. Wick, M. R. Gilbert, A. B. Lassman, et al., Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group, Journal of Clinical Oncology, vol. 28, no. 11, pp. 1963- 1972, 2010.
  • 5A. Drevelegas and N. Papanikolaou, Imaging modalities in brain tumors, in Imaging of Brain Tumors with Histological Correlations. Springer, 2011, pp. 13-33.
  • 6J. J. Corso, E. Sharon, S. Dube, S. E1-Saden, U. Sinha, and A. Yuille, Efficient multilevel brain tumor segmentation with integrated bayesian model classification, Medical Imaging, IEEE Transactions on, vol. 27, no. 5, pp. 629-640, 2008.
  • 7Y.-L. You, W. Xu, A. Tannenbaum, and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, Image Processing, IEEE Transactions on, vol. 5, no. 11, pp. 1539-1553, 1996.
  • 8J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1. Teubner Stuttgart, 1998.
  • 9T. Ogden, Essential Wavelets for Statistical Applications and Data Analysis. Springer, 1997.
  • 10R. D. Nowak, Wavelet-based rician noise removal for magnetic resonance imaging, Image Processing, IEEE Transactions on, vol. 8, no. 10, pp. 1408-1419, 1999.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部