期刊文献+

Artificial Monitoring of Eccentric Synchronous Reluctance Motors Using Neural Networks

下载PDF
导出
摘要 This paper proposes an artificial neural network for monitoring and detecting the eccentric error of synchronous reluctance motors.Firstly,a 15 kWsynchronous reluctance motor is introduced and took as a case study to investigate the effects of eccentric rotor.Then,the equivalent magnetic circuits of the studied motor are analyzed and developed,in cases of dynamic eccentric rotor and static eccentric rotor condition,respectively.After that,the analytical equations of the studied motor are derived,in terms of its air-gap flux density,electromagnetic torque,and electromagnetic force,followed by the electromagnetic finite element analyses.Then,the modal analyses of the stator and the whole motor are performed,respectively,to explore the natural frequency and the modal shape of the motor,by which the further vibrational analysis is possible to be conducted.The vibration level of the housing is furtherly studied to investigate its relationship with the rotor eccentricity,which is validated by the prototype test.Furthermore,an artificial neural network,which has 3 layers,is proposed.By taking the air-gap flux density,the electromagnetic force,and the vibrational level as inputs,and taking the eccentric distance as output,the proposed neural network is trained till the error smaller than 5%.Therefore,this neural network is obtaining the input parameters of the tested motor,based on which it is automatically monitoring and reporting the eccentric error to the upper-level control center.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第7期1035-1052,共18页 计算机、材料和连续体(英文)
  • 相关文献

参考文献4

二级参考文献1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部