期刊文献+

Urdnet:A Cryo-EM Particle Automatic Picking Method

下载PDF
导出
摘要 Cryo-Electron Microscopy(Cryo-EM)images are characterized by the low signal-to-noise ratio,low contrast,serious background noise,more impurities,less data,difficult data labeling,simpler image semantics,and relatively fixed structure,while U-Net obtains low resolution when downsampling rate information to complete object category recognition,obtains highresolution information during upsampling to complete precise segmentation and positioning,fills in the underlying information through skip connection to improve the accuracy of image segmentation,and has advantages in biological image processing like Cryo-EM image.This article proposes A U-Net based residual intensive neural network(Urdnet),which combines point-level and pixel-level tags,used to accurately and automatically locate particles from cryo-electron microscopy images,and solve the bottleneck that cryo-EM Single-particle biologicalmacromolecule reconstruction requires tens of thousands of automatically picked particles.The 80S ribosome,HCN1 channel and TcdA1 toxin subunits,and other public protein datasets have been trained and tested on Urdnet.The experimental results show that Urdnet could reach the same excellent particle picking performances as the mainstream methods of RELION,DeepPicker,and acquire the 3Dstructure of picked particleswith higher resolution.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第7期1593-1610,共18页 计算机、材料和连续体(英文)
基金 supported by Key Projects of the Ministry of Science and Technology of the People’s Republic of China(2018AAA0102301) the Open Research Fund of Hunan Provincial Key Laboratory of Network Investigational Technology,Grant No.2018WLZC001.
  • 相关文献

参考文献2

二级参考文献10

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部