摘要
以液体火箭发动机为研究对象,基于数据同化思想,采用集合卡尔曼滤波(EnKF)算法对发动机启动瞬态进行了状态监测。建立了发动机系统动力学模型,梳理了EnKF算法原理,设计了发动机状态监测的EnKF算法方案,并对发动机启动瞬态状态参数进行估计计算。计算结果同仿真与点火数据进行对比,结果表明:基于EnKF算法的火箭发动机状态监测值与仿真值和点火数据吻合良好,EnKF算法能够实现对于液体火箭发动机状态的有效监测。
Taking liquid rocket engine as the research object,based on the idea of data assimilation,the condition monitoring of engine start-up transient is carried out by using the Ensemble Kalman Filter algorithm(EnKF).The engine system dynamics model is established.The principle of Ensemble Kalman Filter algorithm is combed.The Ensemble Kalman Filter algorithm scheme for engine condition monitoring is designed.The transient state parameters of engine start-up transient are estimated.The calculation results are compared with the simulation values and ignition data.The results show that the rocket engine condition monitoring values based on the Ensemble Kalman Filter algorithm are in good agreement with the simulation values and ignition data.The Ensemble Kalman Filter algorithm can effectively monitor the state of liquid rocket engine.
作者
董立宝
何博
聂万胜
张泽昊
Dong Libao;He Bo;Nie Wansheng;Zhang Zehao(Space Engineering University,Beijing 101416,China)
出处
《战术导弹技术》
北大核心
2022年第3期91-97,共7页
Tactical Missile Technology
关键词
液体火箭发动机
动态特性
启动瞬态
数据同化
集合卡尔曼滤波
状态监测
liquid rocket engine
dynamic characteristics
start-up transient
data assimilation
Ensemble Kalman Filter
condition monitoring