期刊文献+

基于Kinect视频的图像增晰与检测算法研究 被引量:4

Research on Image Enhancement and Detection Algorithm Based on Kinect Video
下载PDF
导出
摘要 图像中的元素目标检测和图像增晰是计算机在图像计算、视觉表达中的重要任务,尤其是在视频监控、导航、智能交通、医药等领域内有着重要的应用价值。利用HOG/HOD框架和SSD目标检测算法,以及中值滤波、双边滤波、形态学等图像增晰方法,对不同的数据集进行实验与测试,旨在通过Kinect深度视频在目标检测和图像增晰方面有所增进。研究发现:HOG算法与SSD算法均能理想地完成目标检测和图像增晰,HOG算法耗时性能优越,SSD算法在检测精确率和召回率上较HOG算法更优越;利用中值滤波对RGB图像进行增晰,能够有效改善图像的色彩像素噪点等瑕疵。 Element target detection and image enhancement are important in computer calculation and visual expression.Especially,they have important application values in fields such as video surveillance,robot navigation,intelligent transportation,and medicine.Using HOG/HOD framework and SSD target detection algorithm,as well as image enhancement algorithms such as median filtering,bilateral filtering,morphology,experiments and tests are carried out on different data sets,aiming at improving target detection and image enhancement through Kinect in-depth video.The results show that both the HOG algorithm and the SSD algorithm can ideally complete the target detection and image enhancement.The HOG algorithm is less time-consuming than the SSD algorithm,but the SSD algorithm is better than the HOG algorithm in detection accuracy and recall;using the median filter to perform the RGB image enhancement can effectively improve the color,pixel,noise and other defects of the image.
作者 查晶晶 ZHA Jingjing(Department of Information Engineering,Tongling Polytechnic,Tongling 244000,China)
出处 《太原学院学报(自然科学版)》 2022年第3期65-70,共6页 Journal of TaiYuan University:Natural Science Edition
基金 安徽省高校人文社会科学研究重点项目:基于AR技术的铜雕艺术品数字化展示研究(SK2021A0962) 2020年安徽省“三全育人”试点省建设暨高校思政工作能力提升项目:“弘扬社会主义核心价值观名师工作室”(sztsjh-2020-1-48)。
关键词 KINECT 深度视频 目标检测 图像增晰 Kinect depth video target detection image enhancement
  • 相关文献

参考文献9

二级参考文献84

  • 1余涛.Kinect应用开发实战:用最自然的方式与机器对话[M].北京:机械工业出版社,2012.
  • 2HAN J G,SHAO L,XU D,et al.Enhanced computervision with microsoft kinect sensor:A review[J].IEEE Transactions on cybernetics,2013,43(5):1318-1334.
  • 3HISEH CH T,WANG H CH,WU YK,et al.A Kinect-based people-flow counting system[C].2012 Internation-al Symposium on Intelligent Signal Processing and Com-munications Systems(ISPACS),2012:146-150.
  • 4DI WU,ZHU F,SHAO L.One shot learning gesturerecognition from RGBD images[C].2012 IEEE Comput-er Society Conference on Computer Vision and PatternRecognition Workshops(CVPRW),2012:7-12.
  • 5SPINELLO L,ARRAS K O.People detection in RGB-Ddata[C].2011 IEEE/RSJ International Conference onIntelligent Robots and Systems(IROS),2011:3838-3843.
  • 6XIA L,CHEN CH CH,AGGAKWAL J K.Humandetection using depth information by kinect[C].2011 IEEE Computer Society Conference on Computer Vi-sion andPattern Recognition Workshops(CVPRW),2011;15-22.
  • 7AMAMRA A,MOUATS T,AOUF N.GPU based GMMsegmentation of Kinect data[C].56th International Sym-posium ELMAR,2014,1-4.
  • 8MURGIA J,MEURIE C,RUICHEK Y.An improvedcolorimetric invariants and RGB-depth-based codebookmodel for background subtraction using Kinect[C].Mexican International Conference on Artificial Intelli-gence,2014,380-392.
  • 9BARNICH O,VAN DROOGENBROECK M.ViBe:Auniversal background subtraction algorithm for video se-quences[J].IEEE Transactions on Image Processing,2011,20(6):1709-1724.
  • 10YIN C,LUO Y,ZHANG D.A novel backgroundsubtraction for intelligent surveillance in wireless net-work[C].Wireless Communications and NetworkingConference(WCNC),IEEE,2014:3017-3021.

共引文献68

同被引文献33

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部