摘要
目的评价自动乳腺全容积扫描(ABVS)冠状面所见联合肿瘤标记物评估乳腺癌腋窝淋巴结转移(ALNM)的价值。方法观察117例134个乳腺癌病灶的冠状面ABVS所见,以病理学结果为金标准将其分为ALNM组(64例,73个病灶)及无ALNM组(53例,61个病灶);比较组间病灶冠状面ABVS征象及肿瘤标记物表达的差异,采用二元logistic回归分析ALNM的危险因素。绘制受试者工作特征曲线,计算曲线下面积(AUC),评价各指标及联合应用评估乳腺癌伴ALNM的效能。结果ALNM组与无ALNM组原发灶最大径、位置,ABVS有无“云雾征”“汇聚征”“莲藕征”,人表皮生长因子受体2(HER-2)及Ki-67结果差异均有统计学意义(P均<0.05)。logistic回归分析显示,原发灶位于左乳,ABVS冠状面见“云雾征”“汇聚征”及Ki-67(≥20%+)是乳腺癌ALNM的危险因素,以之评估乳腺癌ALNM的AUC分别为0.596、0.640、0.606及0.597,各项联合的AUC为0.733。结论根据ABVS冠状面所见结合肿瘤标记物可评估乳腺癌ALNM。
Objective To observe the value of coronal signs of automatic breast volume scanner(ABVS)and tumor indicators for evaluating axillary lymph node metastasis(ALNM)of breast cancer.Methods The coronal signs of ABVS of 134 lesions in 117 patients with breast cancer were observed and divided into ALNM group(64 cases,73 lesions)and non-ALNM group(53 cases,61 lesions)according to the pathological findings.The coronal signs of ABVS and the expression of tumor indicators were compared between groups.The risk factors of ALNM were analyzed with binary logistic regression.The operating characteristic curves(ROC)were drawn,and areas under the curves(AUC)were calculated,and the efficacies for evaluating ALNM of breast cancer were explored.Results There were significant differences of the maximum diameter and location of lesions,the cloud sign,the convergence sign and the lotus root sign on coronal ABVS,as well as human epidermal growth factor receptor-2(HER-2)and Ki-67 level between groups(all P<0.05).Logistic regression analysis showed that locating in the left breast,the cloud sign and the convergence sign on coronal plane of ABVS and Ki-67(≥20%+)were risk factors for ALNM of breast cancer,the AUC for evaluating ALNM of breast cancer was 0.596,0.640,0.606 and 0.597,respectively,and the combined AUC was 0.733.Conclusion ALNM of breast cancer could be evaluated according to ABVS coronal signs combined with tumor indicators.
作者
刘韬
陈庭威
严宝妹
杨慧慧
梁伟翔
LIU Tao;CHEN Tingwei;YAN Baomei;YANG Huihui;LIANG Weixiang(Department of Ultrasound Medicine,the Third Affiliated Hospital of Guangzhou Medical University,Guangzhou 510150,China;Guangdong Provincial Key Laboratory of Major Obstetric Diseases,Guangzhou 510150,China;Department of Intervention,Guangzhou Red Cross Hospital,Jinan University,Guangzhou 510240,China)
出处
《中国医学影像技术》
CSCD
北大核心
2022年第8期1177-1180,共4页
Chinese Journal of Medical Imaging Technology
基金
广东省医学科研基金(B2021350)
广东省本科高校教学质量与教学改革工程建设项目(2021454)
广州医科大学附属第三医院青年科研项目(2020Q04)
广州医科大学附属第三医院临床研究项目(LCYJ-2019-007[研004])。
关键词
乳腺肿瘤
淋巴结转移
自动乳腺全容积扫描
breast neoplasms
lymphatic metastasis
automatic volume breast scanner