期刊文献+

CT影像组学预测肾透明细胞癌病理分级:Meta分析 被引量:2

CT radiomics for predicting pathological grade of renal clear cell carcinoma:Meta-analysis
下载PDF
导出
摘要 目的采用Meta分析观察CT影像组学预测肾透明细胞癌(ccRCC)病理分级的价值。方法检索建库至2021年1月PubMed、WebofScience、EMbase及中国知网、中国生物医学文献服务系统和万方医学网CT影像组学预测ccRCC病理分级相关文献,并进行筛选、质量评价及资料提取;以Stata16.0软件行Meta分析。结果纳入16篇文献、2489例患者共2495个ccRCC病灶。CT影像组学预测ccRCC病理分级无明显阈值效益(r=0.12,P<0.01)而具有较高异质性(I^(2)≥50%),其合并敏感度0.85[95%CI(0.80,0.89)]、合并特异度0.86[95%CI(0.81,0.90)],阳性似然比6.00[95%CI(4.30,8.30)]、阴性似然比0.18[95%CI(0.13,0.24)]、诊断比值比34.00[95%CI(20.00,57.00)],曲线下面积0.92。结论CT影像组学预测ccRCC病理分级效能较佳。 Objective To observe the value of CT radiomics for predicting pathological grade of clear cell renal cell carcinoma(ccRCC)with meta-analysis.Methods Literature concerning predicting pathological grade of ccRCC based on CT radiomics in the PubMed,Web of Science,EMbase,CNKI,SinoMed and Wanfang Med Online were searched from the time of establishment to January 2021.Literature screening,quality evaluation and data extraction were performed.Stata 16.0 was used for meta-analysis.Results A total of 16 articles were enrolled,including 2489 patients with 2495 ccRCC lesions.There was no significant threshold benefit in predicting the pathological grade of ccRCC based on CT radiomics(r=0.12,P<0.01)but was high heterogeneous(I^(2)≥50%).The combined sensitivity was 0.85(95%CI[0.80,0.89]),combined specificity was 0.86(95%CI[0.81,0.90]),positive likelihood ratio was 6.00(95%CI[4.30,8.30]),negative likelihood ratio was 0.18(95%CI[0.13,0.24]),the diagnostic odds ratio was 34.00(95%CI[20.00,57.00])and area under the curve was 0.92.Conclusion CT radiomics was effective for predicting pathological grade of ccRCC.
作者 曹新玥 朱美霖 印隆林 刘一铭 吴颖 CAO Xinyue;ZHU Meilin;YIN Longlin;LIU Yiming;WU Ying(Department of Radiology,Sichuan Academy of Medical Sciences,Sichuan Provincial People’s Hospital,Chengdu 610072,China;School of Medicine,University of Electronic Science and Technology of China,Chengdu 610054,China;Department of Radiology,the Affiliated Hospital of Southwest Medical University,Luzhou 646000,China;Department of Radiology,Affiliated Hospital of North Sichuan Medical Collegev)
出处 《中国医学影像技术》 CSCD 北大核心 2022年第8期1197-1202,共6页 Chinese Journal of Medical Imaging Technology
关键词 肾肿瘤 病理学 体层摄影术 X线计算机 荟萃分析 影像组学 kidney neoplasms pathology tomography,X-ray computed meta-analysis radiomics
  • 相关文献

参考文献4

二级参考文献21

共引文献56

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部