摘要
目前,知识追踪已成为自适应个性化辅助学习的研究热点,而基于循环神经网络的深度知识追踪(Deep Knowledge Tracing,DKT)模型在知识追踪领域已取得了较好的效果。但是,DKT模型在融合领域特征时仍存在特征消减和知识点关联关系遗忘等问题,其精准性有待提高。为此,文章在梳理DKT模型融合领域特征相关研究现状的基础上,提出了一种基于双流结构和多知识点映射结构改进的深度知识追踪模型,并通过实验验证了此模型的精准性相较于原始DKT模型及其相关的改进模型有明显提升,并指出其在智慧学习环境下学生认知结构刻画和学习服务精准推荐方面具有的广阔应用前景。通过研究,文章旨在提升深度知识追踪的精准性并进一步助力自适应个性化学习的实现。
At present,knowledge tracing has become the research hotspot of adaptive personalized assisted learning,and the deep knowledge tracing(DKT)model based on the recurrent neural network has achieved good results in the field of knowledge tracing.However,the DKT model still has problems such as feature elimination and forgetting knowledge point association relationships when fusing domain features,and its accuracy needs to be improved.Therefore,on the basis of combing the research status related to fusing domain features of the DKT model,this paper proposed a deep knowledge tracing model with dual-stream structure and multi-knowledge points mapping structure(DKTDM),and through experiments verified that its accuracy was significantly improved compared to the original DKT model and its related improved models.In addition,it was pointed out that its application in characterizing students’cognitive structure and accurate recommendation of learning services in smart learning environments would be promising.Through the study,this paper aimed to improve the accuracy of deep knowledge tracing,and contribute more to the realization of adaptive learning.
作者
周东岱
董晓晓
顾恒年
马宇驰
ZHOU Dong-dai;DONG Xiao-xiao;GU Heng-nian;MA Yu-chi(School of Information Science and Technology,Northeast Normal University,Changchun,Jilin,China 130117)
出处
《现代教育技术》
CSSCI
2022年第8期111-118,共8页
Modern Educational Technology
基金
国家自然科学基金面上项目“基于深度学习的自适应学习系统关键技术研究”(项目编号:61977015)
吉林省自然科学基金项目“基于深度学习的学习者知识水平精准评估技术研究”(项目编号:20200201298JC)
国家自然科学基金青年项目“融合知识结构与试题属性的概率知识追踪关键技术研究”(项目编号:62107008)
吉林省科技发展计划项目“智能化网络学习空间构建关键技术研究”(项目编号:20200602053ZP)的阶段性研究成果。