期刊文献+

以空气作为加氧介质的全保护加氧处理安全性及经济性研究 被引量:1

Study on the Safety and Economy of Full Protection Oxygenation Treatment with Air as the Medium
下载PDF
导出
摘要 加氧处理是目前超临界机组优选的化学水工况。以某电厂为例,研究了电厂使用全保护加氧设备进行加氧处理的安全性和经济性,结果表明,以空气作为加氧介质能够安全有效地抑制给水系统及高压加热器疏水系统的流动加速腐蚀,加氧前后蒸汽系统氧含量不变,不存在加氧促进氧化皮剥落的风险,安全性显著提高,且在加氧处理工况下,控制给水pH值为9.0左右,降低加氨量后大幅延长了精处理混床的运行周期和锅炉酸洗周期,获得了明显的经济效益。 Oxygenation treatment is currently the preferred chemical water condition for supercritical units.Taking a power plant as an example,the safety and economy of oxygenation treatment with full protection oxygenation equipment are studied.The results show that:with air as the oxygenation medium,the flow accelerated corrosion of the water supply system and the high-pressure heater drainage system can be safely and effectively inhibited.The oxygen content of steam system remains unchanged before and after oxygenation,and there is no risk that adding oxygen will promote peeling off of oxide skin.Therefore,the safety is significant.In addition,the pH value of the feed water is controlled to be about 9.0 under the oxygenation treatment condition,and the operation cycle of the fine treatment mixed bed and boiler pickling cycle are greatly extended after the amount of ammonia added is reduced,which brings about obvious economic benefits.
作者 李朋佳 李鹏 付强 LI Pengjia;LI Peng;FU Qiang(Xi'an Thermal Power Research Institute Co.,Ltd.,Xi'an,Shaanxi 710054,China;Fengcheng Phase II Power Plant of Jiangxi Ganneng Co.,Ltd.,Shangrao,Jiangxi 331100,China;CHN Energy Bo'xing Power Generation Co.,Ltd.,Binzhou,Shandong 256500,China)
出处 《山西电力》 2022年第4期65-68,共4页 Shanxi Electric Power
关键词 全保护加氧 流动加速腐蚀 给水系统 氧化皮剥落 安全性 经济性 full protection oxygenation flow accelerated corrosion water supply system peeling off of oxide skin safety economy
  • 相关文献

参考文献8

二级参考文献41

  • 1陈颖,陈旭伟,俞明芳,周江.超超临界1000MW机组给水加氧技术的应用[J].热力发电,2012,41(9):53-56. 被引量:11
  • 2薛云波,叶江明.直流锅炉水化学工况的研究[J].锅炉技术,2006,37(3):1-4. 被引量:7
  • 3YESODHARAN S. Supercritical water oxidation: an environmentally safe method for the disposal of organic wastes [J]. Current Science, 2002, 82 (9): 1112-1122.
  • 4GORBATY Y E, KALINICHEV A G. Hydrogen bonding in supercritical water 1. experimental results[J]. Journal of Physical Chemistry, 1995,99 (15) : 5336-5340.
  • 5TESTER J W, HOLGAT H R, ARMELLINI F J, et al. Supercritical water oxidation technology: A review of process development and fundamental research [C ]//Emerging technologies in hazardous waste management. 3th ed. Washington, USA: American Chemical Society, 1993.
  • 6KRITZER P, BOUKIS N, DINJUS E. Corrosion of alloy 625 in aqueous solutions containing chloride and oxygen[J]. Corrosion, 1998,54(10) : 824-834.
  • 7KRITZER P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review[J]. The Journal of Supercritical Fluids, 2004,29 (1/ 2) :1-29.
  • 8FILL C, TILTSCHER H. Untersuchungen zur werkstoff-und korrosionsproblematik bei der oxidation von schadstoffen in tiberkritischen wasser [J]. Werkstoffe und Korrosion, 1997,48(3): 146- 150.
  • 9KRIKSUNOV L B, MACDONALD D D. Potential- pH diagrams for iron in supercritical water [J]. Corrosion, 1997,53(8) : 605-611.
  • 10MITTON D B, ZHANG S-H, HAUTANEN K E, et al. Evaluating stress corrosion and corrosion aspects in supercritical water oxidation systems for the destruction of hazardous waste[M]//Corrosion 97. Houston TX: NACE International, 1997.

共引文献48

同被引文献47

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部