摘要
针对在测量薄板材料包辛格效应时极易失稳的问题,提出了利用BP网络实现薄板材料包辛格效应预测的方法。首先,构建了X80管线钢的预拉伸+三点弯曲连续变形过程的仿真模型,并设计试验验证了模型的可靠性。其次,通过仿真计算构建了宏观力学响应(载荷-位移曲线)和包辛格效应的映射关系。最后,以映射关系为样本点,采用BP神经网络构建了包辛格效应预测模型,并通过单轴拉压试验对模型进行了验证。结果表明:该模型对X80管线钢包辛格效应的预测误差为3%,为薄板包辛格效应测定提供了新方法。
Aiming at the problem of instability when the Bauschinger effect of thin sheet materials is measured,the method for Bauschinger effect prediction of thin sheet using BP neural network was proposed.Firstly,the simulation model of continuous deformation process of pre-stretching and three-point bending for X80 pipeline steel was built,and tests were designed to verify the reliability of model.Secondly,the mapping relationship between the macro mechanical response(load-displacement curve)and the Bauschinger effect was established by simulation calculation.Finally,the mapping relationship was taken as the sample point and the BP neural network was used to construct the Bauschinger effect prediction model,and the model was verified by uniaxial tension and compression test.The results show that the prediction error of the model for Bauschinger effect of X80 pipeline steel is 3%,which provides a new method for the determination of Bauschinger effect of thin sheet.
作者
苟建军
王森
王健
范利锋
张文清
田晓东
GOU Jian-jun;WANG Sen;WANG Jian;FAN Li-feng;ZHANG Wen-qing;TIAN Xiao-dong(School of Transportation,Inner Mongolia University,Hohhot 010000,China;Wuhai Kaijie Gas Co.,Ltd.,Wuhai 016000,China;Inner Mongolia Product Quality Inspection and Research Institute,Hohhot 010000,China)
出处
《塑性工程学报》
CAS
CSCD
北大核心
2022年第8期152-157,共6页
Journal of Plasticity Engineering
基金
国家自然科学基金资助项目(52161022,51761030)
内蒙古自然科学基金项目(2019MS05081)
内蒙古大学自治区级大学生创新创业训练计划项目(202010126070)。
关键词
BP神经网络
包辛格效应
X80管线钢
单轴拉压
BP neural network
Bauschinger effect
X80 pipeline steel
uniaxial tension and compression