期刊文献+

基于改进Transformer的社交媒体谣言检测 被引量:3

Rumor detection in social media based on eahanced Transformer
下载PDF
导出
摘要 随着互联网的快速发展,社交媒体日益广泛而深刻地融入人们日常生活的各个方面。社交媒体逐渐成为人们彼此之间用来分享意见、见解、经验和观点的工具和平台,是人们获取分享信息、表达交流观点的主要途径。社交媒体在互联网的沃土上蓬勃发展,爆发出令人眩目的能量。由于社交媒体的开放性,用户规模庞大且来源复杂众多,容易产生各种各样的谣言虚假信息。社交媒体谣言左右着网民对事件的认识、动摇着社会的稳定。因此,如何准确高效地检测谣言成为当下亟待解决的问题。现有基于Transformer的社交媒体谣言检测模型忽略了文本位置信息。为有效提取文本位置信息,充分利用文本潜在信息,提出了一种基于改进Transformer的社交媒体谣言检测模型。该模型从相对位置和绝对位置两方面对传统Transformer进行改进:一方面采用可学习的相对位置编码捕捉文本的方向信息和距离信息;另一方面采用绝对位置编码将不同位置词语映射到不同特征空间。实验结果表明,与其他基准模型相比,所提模型在Twitter15、Twitter16和Weibo 3种数据集上的准确率分别提高了0.9%、0.6%和1.4%。实验结果验证了所提的位置编码改进有效,基于位置编码改进的Transformer模型可显著提升社交媒体谣言检测效果。 With the rapid development of the Internet,social media is increasingly integrated into all aspects of people’s daily life.Social media has gradually become a tool and even a platform for people to share opinions,insights,experiences and viewpoints.It is the main method for people to obtain and share information as well as express and exchange opinions.Currently,social media mainly includes social networking sites,Weibo,Twitter,blogs,forums,podcasts and so on.Due to the openness of social media,the user scale is large and the sources are complex and numerous,then all kinds of rumors and false information may be generated easily.Rumors on social media influence netizens’understanding of events and shake the stability of society.Therefore,how to accurately and efficiently detect rumors has become an urgent problem to be solved.Existing Transformer based social media rumor detection models ignored the text location information.To effectively extract text location information and make full use of text potential information,a rumor detection model in social media was proposed and it was based on the enhanced Transformer.This model enhanced the traditional Transformer from two aspects of relative position and absolute position.It captured the direction information and distance information of the text using learnable relative position coding and mapped words from different positions to different feature spaces using absolute position coding.Experimental results show that,compared with the best benchmark model,the accuracy of the proposed model on Twitter15,Twitter16 and Weibo datasets is enhanced by 0.9%,0.6%and 1.4%,respectively.Experimental results verify the effectiveness of the proposed location coding.And the enhanced Transformer based on location coding can significantly improve the effects of social media rumor detection.
作者 郑洪浩 郝一诺 于洪涛 李邵梅 吴翼腾 ZHENG Honghao;HAO Yinuo;YU Hongtao;LI Shaomei;WU Yiteng(Information Engineering University,Zhengzhou 450001,China)
机构地区 信息工程大学
出处 《网络与信息安全学报》 2022年第4期168-174,共7页 Chinese Journal of Network and Information Security
基金 国家自然科学基金(61601513) 郑州市协同创新重大专项(162/32410218)。
关键词 社交媒体谣言检测 改进Transformer 位置信息 rumor detection in social media enhanced Transformer position information
  • 相关文献

参考文献2

二级参考文献15

  • 1Allport G W, Postman L. The Psychology of Rumor. Oxford:Henry Holt, 1947.
  • 2Kapferer J-N. Rumeurs:le Plus Vieux Média du Monde (in French). Paris:Le Seuil Editions, 1987.
  • 3Peterson W A, Gist N P. Rumor and public opinion. American J Soc, 1951, 57:159-167.
  • 4Budak C, Agrawal D, Abbadi A El. Limiting the spread of misinformation in social networks. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 665-674.
  • 5Castillo C, Mendoza M, Poblete B. Information credibility on twitter. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 675-684.
  • 6Nguyen D T, Nguyen N P, Thai M T. Sources of misinformation in online social networks:who to suspect? In:Proceedings of Military Communications Conference. Orlando:IEEE, 2012. 1-6.
  • 7Okazaki N, Nabeshima K, Watanabe K, et al. Extracting and aggregating false information from microblogs. In:Proceedings of the Workshop on Language Processing and Crisis Information, Nagoya, 2013. 36-43.
  • 8Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it:identifying misinformation in microblogs. In:Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2011. 1589-1599.
  • 9Ratkiewicz J, Conover M, Meiss M, et al. Truthy:mapping the spread of astroturf in microblog streams. In:Proceedings of the 20th International Conference Companion on World Wide Web, Byderabad, 2011. 249-252.
  • 10Liao Q Y, Shi L. She gets a sports car from our donation:rumor transmission in a chinese microblogging community. In:Proceedings of the 2013 Conference on Computer Supported Cooperative Work. San Antonio:ACM, 2013. 587-598.

共引文献45

同被引文献23

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部