期刊文献+

基于注意力机制的改进VGG车辆类型识别研究 被引量:2

Research on Vehicle Type Recognition of Improved VGG Based on Attention Mechanism
下载PDF
导出
摘要 提出一种基于改进VGG11的车辆类型识别算法,用于处理不同类别的车辆型号的识别问题。为了解决一些车辆型号之间非常相似而导致的误检问题,应用注意力机制来增加有效特征图权重,减小无效或效果小的特征图权重,来使得训练模型得到更好的效果,从而提升算法的准确率。为了验证改进的VGG11的性能,将改进模型与经典模型AlexNet和VGG11原模型进行了实验对比。实验结果表明,改进的VGG11模型的收敛速度和精度都要远高于Alexnet和VGG11原模型,在训练50epochs时,就达到了96%的识别精度。 A vehicle type recognition algorithm based on improved VGG11 is proposed to deal with the problem of vehicle type recognition of different categories.In order to solve the error detection problem caused by the similarity between some vehicle models,the attention mechanism is applied to increase the weight of effective feature images and reduce the weight of ineffective or smalleffect feature images,so as to make the training model get a better effect and improve the accuracy of the algorithm.In order to verify the performance of the improved VGG11,the improved model was compared with the classical model AlexNet and the original VGG11 model.The experimental results show that the convergence speed and accuracy of the improved VGG11 model are much higher than that of the AlexNet and the original VGG11 model,and the recognition accuracy can reach 96%when training 50epochs.
作者 章羽 罗素云 陈杨钟 Zhang Yu;Luo Suyun;Chen Yangzhong(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Kumact Power System Co.,Ltd.,Shanghai 201616,China)
出处 《农业装备与车辆工程》 2022年第8期82-87,共6页 Agricultural Equipment & Vehicle Engineering
关键词 VGG卷积神经网络 车辆类型识别 注意力机制 VGG convolutional neural network vehicle type recognition attention mechanism
  • 相关文献

参考文献2

二级参考文献23

  • 1Femdndez-Delgado M, Cemadas E,Barro S, et al. Dowe Need Hundreds of Classifiers to Solve Real WorldClassification Problems? [J]. Journal of MachineLearning Research (SI 532-4435), 2014, 15(1):3133-3181.
  • 2Joachims T. Making Large-scale Support VectorMachine Learning Practical [C]// Advances in kernelmethods. USA: MIT Press, 1999: 169-184.
  • 3Harada T, Ushiku Y,Yamashita Y,et al. DiscriminativeSpatial Pyramid [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1617-1624.
  • 4S 6 nchez J, Perronnin F, Mensink T, et al. ImageClassification with the Fisher Vector; Theory andPractice [J]. International Journal of Computer Vision(S0920-5691), 2013, 105(3): 222-245.
  • 5Zhang C, Liu J, Tian Q, et al. Image Classification byNon-negative Sparse Coding, Low-rank and SparseDecomposition [C]// Computer Vision and PatternRecognition (CVPR), 2011 IEEE Conference on. USA:IEEE, 2011: 1673-1680.
  • 6Boureau Y L, Bach F, LeCun Y,et al. Learningmid-level features for recognition[C]//Computer Visionand Pattern Recognition (CVPR), 2010 IEEEConference on. USA:IEEE,2010: 2559-2566.
  • 7Lecun Y, Kavukcuoglu K, Farabet C. ConvolutionalNetworks and Applications in Vision [C]// Circuits andSystems (ISCAS), Proceedings of 2010 IEEEInternational Symposium on. USA: IEEE, 2010: 253-256.
  • 8Bouvrie J. Notes on Convolutional Neural Networks[R]// MIT-CBCL Technical Reports. Germany: SpringerInternational, 2006: 38-44.
  • 9Fischer A, Igel C. Training Restricted BoltzmannMachines: An Introduction [J]. Pattern Recognition(S0031-3203), 2014, 47(1): 25-39.
  • 10Tang Y, Salakhutdinov R, Hinton G. Robust BoltzmannMachines for Recognition and Denoising [C]// ComputerVision and Pattern Recognition (CVPR), 2012 IEEEConference on. USA: IEEE, 2012: 2264-2271.

共引文献65

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部