期刊文献+

HIGH ACCURACY ARITHMETIC AVERAGE TYPE DISCRETIZATION FOR THE SOLUTION OF TWO-SPACE DIMENSIONAL NONLINEAR WAVE EQUATIONS

原文传递
导出
摘要 In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method.
出处 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第2期1-18,共18页 建模、仿真和科学计算国际期刊(英文)
基金 “The University of Delhi”under research grant No.Dean(R)/R&D/2010/1311.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部