摘要
A significant amount of research is concerned with dynamic modal parameters for damage detection of structural conditions due to their simplicity in use and feasibility.However,their use for damage detection should be performed with special attention,particularly in operational and environmental conditions subjected to temperature changes.Beams in construction industries experience different loading types,such as temperature changes leading to crack initiation and propagation.Changed physical and dynamic properties such as natural frequencies and mode shapes indicate that damage has occurred within the structures.In this study,vibration analysis of cantilever and cantilever simply supported beams has been carried out on intact and damaged beams to investigate the coupled effect of temperature changes and damage depth on natural frequencies.A numerical analysis of beams is completed using ANSYS software.The results of numerical simulation are validated using two other studies from literature.Numerical results revealed that in order to perform a successful damage assessment using the frequency shift,the vibration modes should be selected properly.In addition,an increase in temperature results in a decrease in structural frequencies.The assessment of the effect of damage depth on natural frequencies also confirms that when damage depth is increased,there is a significant decrease in natural frequency responses.
基金
This work is partially supported by the Anhui Provincial International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures(No.2021AHGHZD01)
the Nanjing Science and Technology Project(No.202002014)
the Nantong Science and Technology Opening Cooperation Project in 2021(No.BW2021001).