期刊文献+

Determining the in vitro Anti-Aging Effect of the Characteristic Components from Eucommia ulmoides 被引量:2

下载PDF
导出
摘要 To evaluate the potential anti-aging ability of Eucommia ulmoides,four characteristic components(chlorogenic acid,geniposidic acid,aucubin,quercetin)were selected to assess their effects on H_(2)O_(2)-induced oxidative damage model of human umbilical vein endothelial cell(HUVEC).Oxidative damage indexes,inflammatory factors,cell cycle,cell apoptosis,cell senescence,and their related proteins were analyzed by methyl thiazolyl tetrazolium(MTT)assay,enzyme-linked immunosorbent assay(ELISA),propidium iodide(PI)staining,annexin V-FITC/PI double staining,SAβ-galactosidase staining,and western blotting(WB).The results showed that H_(2)O_(2)-induced cell growth inhibition rate decreased as supplementation with characteristic components when compared to H_(2)O_(2) group.Meanwhile,the contents of antioxidant indexes(reactive oxygen species,lactate dehydrogenase,molondialdehyde,superoxide dismutase,glutathione),inflammatory factors(nuclear factor kappa-B,intercellular cell adhesion molecule-1,vascular cell adhesion protein 1),and functional factors(NO,Endothelin-1)in characteristic components treated groups improved if comparison with H_(2)O_(2) group,suggesting the characteristic components of E.ulmoides could alleviate H_(2)O_(2)-induced oxidative damage.Moreover,cell cycle,cell apoptosis,cell senescence,and their related proteins under characteristic components treatment exhibited a better effect than under H_(2)O_(2) treatment,implying the characteristic components could participate in anti-aging via multiple pathways.These results manifested that the characteristic components of E.ulmoides posses the capacity of anti-aging,which provided a basis for investigating the anti-aging ability of E.ulmoides itself.
出处 《Journal of Renewable Materials》 SCIE EI 2022年第12期3131-3145,共15页 可再生材料杂志(英文)
基金 This study was supported by the National Natural Science Foundation of China(Grant No.42107020) the Science and Technology Project of Hunan Province(2020SK2028).
  • 相关文献

参考文献1

二级参考文献1

共引文献9

同被引文献141

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部