摘要
采用非线性有限元软件ANSYS/LS-DYNA,结合混凝土冰材料数值模型,建立了楔形冰碰撞下蜂窝金属夹芯板动态响应数值仿真模型,得到了碰撞过程的冲击力时间曲线和冲击力位移曲线、蜂窝金属夹芯板的变形以及冲击能量分配情况,并开展了楔形冰-蜂窝金属夹芯板碰撞冲击试验验证。研究结果表明,楔形冰碰撞下蜂窝金属夹芯板上面板表现为局部凹陷与整体弯曲的耦合变形模式,下面板表现为整体弯曲变形模式,冲击能量转化为蜂窝金属夹芯板的变形能和楔形冰的回弹动能以及冰体破碎耗散能量,数值仿真与试验结果吻合较好,验证了数值计算模型的准确性。在此基础上,研究了浮冰碰撞冲击位置以及蜂窝芯层厚度对其动态响应及能量分配的影响规律。
In this paper,the numerical simulation model of a honeycomb sandwich plate under ice floe impact was established by using finite element package ANSYS/LS-DYNA based on a concrete constitutive ice model.The impact force-displacement curves and the structural deformation as well as the energy absorption properties were numerically achieved.In addition,the ice wedge impact test of honeycomb sandwich plate was conducted.Result show that the top face sheet deformation mode intuitively embodies as the coupling mode of local structural indentation and global bending deformation,whereas the bottom face sheet deformation mode mainly manifests as the global bending deformation.The ice impact energy is mainly converted into the plastic deformation energy absorption of honeycomb sandwich plate and rebound kinetic energy of ice wedge as well as the energy dissipation of ice fracture failure.Numerical results are consistent with experimental results,which show the accuracy and reliability of the numerical model.Furthermore,the effects of ice floe impact position and honeycomb core thickness on the dynamic responses and energy absorption were investigated.
作者
吴雄
李应刚
肖雯
蔡伟
朱凌
WU Xiong;LI Yinggang;XIAO Wen;CAI Wei;ZHU Ling(Key Laboratory of High Performance Ship Technology(Wuhan University of Technology),Ministry of Education,Wuhan 430063,Chona;School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430063,China;State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi'an 710049,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2022年第16期204-209,共6页
Journal of Vibration and Shock
基金
国家自然科学基金(11972269)
湖北省自然科学基金(2019CFB566)。
关键词
蜂窝金属夹芯板
浮冰碰撞
动态响应
能量吸收
试验验证
honeycomb sandwich plates
ice floe impact
dynamic responses
energy absorption
experimental validations