期刊文献+

基于声成像与卷积神经网络的轴承故障诊断方法及其可解释性研究 被引量:11

An acoustic fault diagnosis method of rolling bearings based on acoustic imaging and convolutional neural network
下载PDF
导出
摘要 常用的振动诊断技术一般采用接触式测量,在测量受限的场合具有一定的局限性。该研究提出一种具有非接触测量优势的基于声成像与卷积神经网络的滚动轴承声学故障诊断方法。首先,利用传声器阵列获取滚动轴承辐射的空间声场;然后,用波叠加法进行声成像,重建后的声像能够描述声场的空间分布信息;最后,建立卷积神经网络(convolutional neural network,CNN),使用不同轴承运行状态下的声像样本对CNN模型进行训练用于故障诊断。同时,针对深度学习模型的诊断结果缺乏可解释性的问题,采用梯度加权类激活图(gradient-weighted class activation map,Grad-CAM)算法对卷积神经网络在基于声像的轴承故障诊断中的可解释性进行了研究。轴承试验台的声阵列数据验证了所提方法的有效性及优越性。 Contact measurementis generally used in the common vibration diagnosis techniques,which has certain limitations in situations where measurement is limited.In this paper,a rolling bearing acoustic fault diagnosis method based on acoustic imaging and convolutional neural network with the advantage of non-contact measurement was proposed.First,the spatial acoustic field radiated by the rolling bearing was obtained by using microphone array;then,acoustic imaging was performed by wave superposition method,and the reconstructed acoustic image can describe the spatial distribution information of the acoustic field;finally,a convolutional neural network(CNN)was established,which was trained for fault diagnosis using the acoustic image samples of different bearing operating states.Meanwhile,to address the problem of lack of interpretability of diagnostic results of deep learning models,this paper investigates the interpretability of convolutional neural networks in acoustic image-based bearing fault diagnosis using the gradient-weighted class activation map(Grad-CAM)algorithm.The acoustic array data from the bearing experimental bench verifies the effectiveness and superiority of the proposed method.
作者 王冉 石如玉 胡升涵 鲁文波 胡雄 WANG Ran;SHI Ruyu;HU Shenghan;LU Wenbo;HU Xiong(School of Logistics Engineering,Shanghai Maritime University,Shanghai 201306,China;Shanghai Branch,Beijing Hi-key Plus Technology Co.,Ltd.,Shanghai 201100,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第16期224-231,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51505277)。
关键词 声成像 故障诊断 卷积神经网络(CNN) 波叠加法 梯度加权类激活图(Grad-CAM) acoustic imaging bearing fault diagnosis convolutional neural network(CNN) wave superposition method gradient-weighted class activation map(Grad-CAM)
  • 相关文献

参考文献4

二级参考文献22

  • 1于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 2肖述兵.滚动轴承振动故障诊断实践[J].轴承,2006(3):31-33. 被引量:6
  • 3Benko U, Petrovcic J, Juricic D, et al. An approach to fault diagnosis of vacuum cleaner motors based on sound analysis [J ]. Mechanical Systems and Signal Processing, 2005, 19(2) : 427 -445.
  • 4Baydar N, Ball A. Detection of gear failures via vibration and acoustic signals using wavelet transform [ J ]. Mechanical Systems and Signal Processing,2003, 17 (4) : 787 -804.
  • 5Williarms E G, Maynard J D, Skudrzhk E. Sound source reconstructions using a microphone array [ J ]. J. Acoust. Soc. Am., 1980, 68(1): 340-344.
  • 6Veronesi W A, Marnard J D. Nearfield acoustic holography ( NAH ) : II. holographic reconstruction algorithms and computer implementation[J]. J. Acoust. Soc. Am., 1987, 81(5) : 1307 - 1322.
  • 7Hou J J, Jiang W K, Lu W B. Application of near field holography-based diagnosis technique in gearbox fault diagnosis [ J ]. Journal of Vibration and Control, 2011, 18(14): 1-11.
  • 8Lu W B, Jiang W K, Wu H J, et al. A fault diagnosis scheme of rolling bearing based on near-field acoustic holography and gray level co-occurrence matrix [ J ]. Journal of Sound and Vibration, 2012,331 (15) :3663 -3674.
  • 9Haralick R M, Shanmugan K, Dinstein I. Texture features for image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6) : 610 -621.
  • 10Liu G H, Yang J Y. Image retrieval based on the texton co- occurrence matrix[ J]. Pattern Recognition, 2008, 41 (12) : 3521 - 3527.

共引文献61

同被引文献121

引证文献11

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部