期刊文献+

Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment

下载PDF
导出
摘要 The accumulation of Cu^(2+)in water is a potential threat to human health and environment.Dicarboxylic nano-cellulose(DNC)with rich carboxyl groups was prepared through the NaIO_(4)–NaClO_(2) sequential oxidation meth-od to efficiently remove copper ions,and the Cu 2+adsorption properties and cost were studied.The maximum adsorption capacity reached 184.2 mg/g at pH 6 and an adsorbent dose of 5 g/L.Theoretically,the maximum adsorption capacities of monocarboxylic nanocellulose(MNC),DNC,and tricarboxylic nanocellulose(TNC)with carboxyl groups as the main adsorption sites were calculated to be 228.7,261.3,and 148.1 mg/g,respectively.The Cu^(2+)adsorption costs of MNC,DNC,and TNC were calculated and compared with those of powdered activated carbon(PAC).The Cu^(2+)adsorption capacity of DNC is higher than that of PAC,and the adsorption cost is close to or lower than that of PAC,demonstrating that the DNC prepared by sequential oxidation of NaIO_(4)–NaClO_(2) has competitive adsorption capacity and cost in the treatment of wastewater containing Cu^(2+).
出处 《Journal of Renewable Materials》 SCIE EI 2022年第3期751-766,共16页 可再生材料杂志(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部