期刊文献+

Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells

原文传递
导出
摘要 Novel near-infrared sensitizers with different anchoring groups aiming toward improved stability and efficiency of dye-sensitized solar cells were synthesized. Adsorption of these dyes on the mesoporous TiO_(2) surface revealed the dye adsorption rate of –CH=CH–COOH (SQ-139)>–CH=C(CN)COOH (SQ-140)>–PO_(3)H_(2) (SQ-143)>–CH=C(CN)PO_(3)H_(2) (SQ-148)>–CH=C(CN)PO_(3)H–C_(2)H_(5) (SQ-157)>–PO_(3)H–C_(2)H_(5) (SQ-151)> –CH=CH–COOH(–PO_(3)H_(2)) (SQ-162). The binding strength of these dyes on mesoporous TiO_(2) as investigated by dye desorption studies follows SQ-162>SQ-143>SQ-148>SQ-139≫SQ-157~SQ-151≫SQ-140 order. The acrylic acid anchoring group was demonstrated to be an optimum functional group owing to its fast dye adsorption rate and better binding strength on TiO_(2) along with good photoconversion efficiency. Results of dye binding on TiO_(2) surface demonstrated that SQ-162 bearing double anchoring groups of phosphonic and acrylic acid exhibited>550 times stronger binding as compared to dye SQ-140 having cyanoacrylic acid anchoring group. SQ-140 exhibited the best photovoltaic performance with photon harvesting mainly in the far-red to near-infrared wavelength region having short circuit current density, open-circuit voltage and fill factor of 14.28 mA·cm^(–2), 0.64 V and 0.65, respectively, giving the power conversion efficiency of 5.95%. Thus, dye SQ-162 not only solved the problem of very poor efficiency of dye bearing only phosphonic acid while maintaining the extremely high binding strength opening the path for the design and development of novel near-infrared dyes with improved efficiency and stability by further increasing the π-conjugation.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第7期1060-1078,共19页 化学科学与工程前沿(英文版)
基金 SSP is thankful to the Japanese society for the promotion of science(JSPS)for the financial support by a grant-in-aid for scientific research C(Grant No.18K05300)to carry out this research.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部