期刊文献+

改进YOLOv4网络的煤矿井下行人检测算法 被引量:3

Coal mine pedestrian detection algorithm based on improved YOLOv4 network
下载PDF
导出
摘要 为满足YOLOv4网络检测井下行人的实时性要求,改进YOLOv4网络结构,将原主干特征提取网络CSPDarknet-53替换为GhostNet网络,利用ASPP结构对主干网络提取的图像特征进行增强,通过深度可分离卷积进一步减小网络参数。结果表明,改进后的网络G-A-YOLOv4能够在准确率与原网络相近的前提下,网络模型减小84 MB,检测速度提高7 fps,能够满足实时性的要求。 This paper intends to realize the real-time requirements for detecting underground pedestrians with YOLOv4 network by improving original network structure.The study involves replacing the network CSPDarknet-53 extracted from the original backbone feature with GhostNet network;enchancing the image features extracted from the backbone network with ASPP structure;and further reducing the network parameters by depth separable convolution.The results show that the improved network G-A-YOLOv4 can reduce the network model by 84 MB and increase the detection speed by 7 fps,which can meet the real-time requirements on the premise that the accuracy is similar to the original network.
作者 汝洪芳 王珂硕 王国新 Ru Hongfang;Wang Keshuo;Wang Guoxin(School of Electrical&Control Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China)
出处 《黑龙江科技大学学报》 2022年第4期557-562,共6页 Journal of Heilongjiang University of Science And Technology
关键词 煤矿井下 行人检测 YOLOv4 ASPP GhostNet coal mine pedestrian detection YOLOv4 ASPP GhostNet
  • 相关文献

参考文献7

二级参考文献32

共引文献62

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部