期刊文献+

基于深度卷积神经网络的刀具寿命动态预测研究 被引量:4

Research on dynamic prediction of tool life based on deep convolutional neural network
原文传递
导出
摘要 刀具寿命预测对提高工件加工精度和生产加工效率具有重要意义.同工况下同型号刀具监测信号数据分布不一致,导致历史寿命预测模型对刀具寿命预测效果有限.鉴于此,提出一种基于深度卷积神经网络(DCNN)的刀具寿命动态预测方法.首先,利用DCNN挖掘历史刀具监测信号的退化趋势特征,构建刀具寿命预测模型,并加入注意力机制对DCNN输出进行加权,加强对刀具寿命特征的学习,提高寿命预测准确度;然后,通过基于KL散度对刀具监测信号数据分布不一致进行检测,从而在已有刀具寿命预测模型的基础上进行更新迭代;最后,利用迭代后的模型再次进行刀具寿命预测.所提出方法很好地体现了刀具实际加工过程对刀具寿命的影响,以铣削数据集为例验证了所提出方法的有效性. Tool life prediction is of great significance for improving the machining accuracy of workpieces and the processing efficiency of production.The data distribution of tool monitoring signals under the same working conditions and models is inconsistent,resulting in the limited effect of historical life prediction models on tool life prediction.This paper proposes a dynamic tool life prediction method based on the deep convolutional neural network(DCNN).Firstly,the DCNN is used to mine the degradation trend characteristics of historical tool monitoring signals,a tool life prediction model is built,and an attention mechanism is added to weight the DCNN output to strengthen the tool life characteristics learn to improve the accuracy of life prediction.Then,by detecting the inconsistency of the tool monitoring signal data distribution based on the KL divergence,iteration is performed on the basis of the existing tool life prediction model.Finally,the iterated model is used to perform tool life prediction again.The method better reflects the influence of the actual machining process of the tool on the tool life.Taking the milling data set as an example,the effectiveness of the method is verified.
作者 郭宏 任必聪 闫献国 田青 任党阳 GUO Hong;REN Bi-cong;YAN Xian-guo;TIAN Qing;REN Dang-yang(School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第8期2119-2126,共8页 Control and Decision
基金 国家自然科学基金项目(51675363,51275333) 山西省回国留学人员科研教研项目(HGKY2019079)。
关键词 刀具寿命预测 特征提取 深度学习 卷积神经网络 动态预测 注意力机制 tool life prediction feature extraction deep learning convolutional neural network dynamic prediction attention mechanism
  • 相关文献

参考文献5

二级参考文献44

共引文献429

同被引文献36

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部