摘要
Specific gravity segregation that occurs during the smelting process always leads to the low composition homogeneity and poor performance stability of the magnesium-rare earth(Mg-RE)alloys.In this study,the segregation behavior of Mg-Gd alloy was investigated by sampling from different locations in the ingot fabricated in a resistance furnace without a pouring process.The combined application of induction-heating and mechanical stirring with various speeds(0-130 r/min)was applied to promote the distribution homogeneity of Gd atoms.In the resistance-heating fabricated ingot,Gd content at the bottom section reaches 407%of that at the top.The coarse dendrites surrounded by the network-like eutectic structures are responsible for the brittle fracture with a poor elongation of 3.7%.By the combined employment of the induction heating and mechanical stirring with the speed of 87 r/min at 740℃for 40 s,the variation of the Gd content within the whole ingot can be reduced to be the minimum of 0.23 wt%.Corresponding formation and regulating models of segregation were also proposed.However,the cooling rate of the melt is reduced by the continuous increase of the stirring speed to 130 r/min,which results in the grain coarsening and lower homogeneity of the ingot.
基金
Project supported by Key Research&Development Project of Guangdong Province(2020B010186002)
National Natural Science Foundation of China(U2037601)
Science and Technology Project of Sichuan Province(2020YFG0213)。