期刊文献+

含未知时延的多输入系统梯度迭代辨识算法

Gradient Iterative Identification Algorithm for Multi-input Systems with Unknown Time Delays
下载PDF
导出
摘要 针对含有未知输入时延的多输入动态调节系统,基于过参数化后系统模型具有的稀疏特性,将压缩感知思想、梯度搜索和递阶辨识原理相结合,提出一种梯度追踪迭代辨识算法。该算法能够从过参数化的高维稀疏参数向量中获取少数关键非零参数位置,实现系统降维,并采用有限的输入输出测量数据,实现对未知参数和时延的联合估计,提高了辨识效率。最后,采用仿真示例验证了所提算法的有效性,仿真结果表明所提方法能够有效估计系统参数和时延。 For multiple-input dynamic adjustment systems with unknown input time delays,the idea of compressed sensing,gradient search and hierarchical identification principle are combined based on the sparse characteristics of the over-parameterization system model,and a gradient pursuit iterative identification algorithm is proposed.The presented algorithm can obtain a few key non-zero parameter locations from the over-parameterization high-dimensional sparse parameter vector to achieve system dimensionality reduction.The presented algorithm can realize the joint estimation of unknown parameters and time delays by using limited input and output measurement data to improve the identification efficiency.Finally,a simulation example is given to verify the effectiveness of the proposed algorithm.The simulation results show that the proposed algorithm can effectively estimate the system parameters and time delays.
作者 陶太洋 肖东岳 TAO Tai-yang;XIAO Dong-yue(School of Intelligent Manufacturing,Nanyang Institute of Technology,Nanyang 473004,China)
出处 《控制工程》 CSCD 北大核心 2022年第7期1242-1248,共7页 Control Engineering of China
基金 河南省重点科技攻关计划项目(21A413006) 南阳市科技发展计划资助项目(JCQY012)。
关键词 多输入 未知时延 参数估计 梯度搜索 递阶辨识 Multiple-input unknown time delay parameter estimation gradient search hierarchical identification
  • 相关文献

参考文献5

二级参考文献46

  • 1Ljung L. System identification: Them7 for the user[ M]. 2nd ed. Englewood Cliffs, N J, USA: Prentice-Hall, 1999.
  • 2Ding F. System identification - New theory and methods[ M ]. Beijing: Science Press, 2013:1 -33.
  • 3Unbehauen H, Rao G P. Continuous-time approaches to system identification - A survey[ J]. Automatica, 1990, 26 (2) : 23 -25.
  • 4Ding F. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling[J]. Applied Mathematical Modelling, 2013, 37(4) : 1694 - 1704.
  • 5Liu Y J, Ding F, Shi Y. An efficient hierarchical identification method for general dual-rate sampled-data systems[J]. Automatica, 2014, 50 (3) : 962 - 970.
  • 6Ding J, Ding F, Liu X P, et al. Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data[J]. IEEE Trans- actions on Automatic Control, 2011, 56 (11 ) : 2677 -2683.
  • 7Sanandaji B M, Vincent T L, Wakin M B, et al. Compressive system identification of LTI and LTV ARX models[ C]//50th IEEE Conference on Decision and Control and European Control Conference. Piscataway, NJ, USA: IEEE, 2011:791 -798.
  • 8Tropp J A. Just relax: Convex programming methods for identifying sparse signals in noise [ J]. IEEE Transactions on Information Theory, 2006, 52(3) : 1030 - 1051.
  • 9Elad M. Sparse and redundant representations: From theory to applications in signal and image processing[M]. Berlin, Germany: Springer- Verlag, 2010.
  • 10Donoho D L. Compressed sensing[ J]. IEEE Transactions on Information Theory, 2006, 52 (4) : 1289 -1306.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部