期刊文献+

基于时空信息组合的分布式光伏功率预测方法研究 被引量:13

Research on distributed photovoltaic power prediction method based on combination of spatiotemporal information
下载PDF
导出
摘要 为保障电网安全稳定运行,提高光伏电站经济效益,需要进一步提升光伏功率预测的准确性。为此提出一种基于时空信息组合的分布式光伏功率预测方法。首先,基于极度梯度提升-长短时记忆神经网络(XGBoost-LSTM)集成模型,利用光伏历史数据时间序列进行预测;然后,基于最小二乘支持向量机(LSSVM)模型,利用光伏电站间的空间相关性进行预测;最后,基于信息熵的基本原理,结合多误差评价角度改进的信息熵确定2种单一预测方法的权值,构建时空信息组合预测模型。研究结果表明:基于多误差评价标准的信息熵权的XGBoost-LSTM+LSSVM模型的平均绝对误差与基于交叉熵的组合模型和基于信息熵的组合模型相比,分别下降1.6%、8.3%;结合单一预测模型的优势,组合模型可降低预测误差,基于多误差评价标准的信息熵组合模型具有更高的鲁棒性与综合性能,可提升分布式光伏功率预测的准确性。 To ensure the stability of power grid operation and improve the economic benefits of photovoltaic power plants,the forecast accuracy of distributed photovoltaic power output needs to be further improved.Thus,a distributed photovoltaic power prediction method based on the combination of spatiotemporal information is proposed.Firstly,on the basis of XGBoost-LSTM integrated model,the time series of photovoltaic historical data areused to carry out theprediction.Then,by using theLSSVM model,the spatial correlation between photovoltaic power plants is used to conduct theprediction.Finally,according to the basisc principle of information entropy,and combing with the information entropy improved by multi-error evaluationcriteria,the weight of the two prediction methods is determined,and the combined prediction model is constructedto realize spatiotemporal information combination prediction.The research result shows that,the mean absolute error of the XGBoost-LSTM+LSSVM model based on the information entropy improved by multi-error evaluation criteria decreases by 1.6% and 8.3% respectively,compared with the combined model based on cross entropy and the model based on information entropy.Combining with the advantages of a single forecasting model,the combined models can reduce the forecasting error.The information entropy combination model based on multi-error evaluation criteria has higher robustness and comprehensive performance,and canimprove the accuracy of distributed photovoltaic power prediction.
作者 杨锡运 赵泽宇 杨岩 张艳峰 YANG Xiyun;ZHAO Zeyu;YANG Yan;ZHANG Yanfeng(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《热力发电》 CAS CSCD 北大核心 2022年第8期64-72,共9页 Thermal Power Generation
基金 国网浙江省电力有限公司科技项目(5211DS220009)。
关键词 光伏功率预测 集成学习 LSTM LSSVM 熵权法 photovoltaic power prediction integrated learning LSTM LSSVM entropy weight method
  • 相关文献

参考文献9

二级参考文献119

共引文献531

同被引文献217

引证文献13

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部