期刊文献+

三维环境中机器人路径规划方法研究 被引量:3

Research on path planning method of robot in 3D environment
下载PDF
导出
摘要 针对三维未知环境中的机器人路径规划问题研究,提出一种基于改进人工蜂群算法的路径规划方法。首先,在传统人工蜂群算法中引入正态分布思想优化蜜源初始化分布,提高初始化的目的性,为后续搜索提供精度保证。其次,优化迭代过程中蜜源位置更新方式,构建蜜源中心领域范围内搜索新蜜源的数学模型。采用MATLAB软件曲面网格划分,构建三维未知环境模型。然后,通过MATLAB软件仿真,将改进人工蜂群算法与传统人工蜂群算法和蚁群算法相比较,发现改进人工蜂群算法程序运行时间更短、陷入局部最优次数更少,求解精度更高,并验证了本文提出方法的可行性。 Aiming at the research of robot path planning in 3D unknown environment,a path planning method based on improved artificial bee colony algorithm is proposed.Firstly,the idea of normal distribution is introduced into the traditional artificial bee colony algorithm to optimize the initial distribution of nectar sources,improve the purpose of initialization,and provide precision guarantees for subsequent searches.Secondly,the update method of the nectar source location in the iterative process is optimized,and a mathematical model for finding new nectar sources in the central area of the nectar source is established.MATLAB software is used to divide the surface mesh,so as to build a three-dimensional unknown environment model.Then,through MATLAB software simulation,the improved artificial bee colony algorithm is compared with the traditional artificial bee colony algorithm and ant colony algorithm.It is found that improved artificial bee colony algorithm has the features of shorter program running time,fewer traps in local optimum,and higher solution precision,which verifies the feasibility of the proposed method.
作者 任鑫磊 徐坚磊 陈海辉 张行 胡燕海 REN Xinlei;XU Jianlei;CHEN Haihui;ZHANG Xing;HU Yanhai(School of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315211,China;Ningbo Hanggong Intelligent Equipment Co Ltd,Ningbo 315311,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第8期41-44,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(51705263) 宁波市“科技创新2025”重大专项项目(2020Z079)。
关键词 机器人路径规划 改进人工蜂群算法 蚁群算法 robot path planning improved artificial bee colony algorithm ant colony algorithm
  • 相关文献

参考文献11

二级参考文献102

  • 1张志顺,胡勇刚,赵宏伟,冯裕钊,冯璞乔.基于改进形式的遗传算法研究[J].微电子学,2002,32(4):273-275. 被引量:6
  • 2KARABOGA D.An idea based on honey bee swarm for numerical optimization[R].Erciyes:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
  • 3FAYYAD U,PIATETSKY-SHAPIRO G,SMYTH P.Knowledge discovery and data mining:towards a unifying framework[C] //Proceedings of Second International Conference on Knowledge Discovery and Data Mining(KDD-96).MA:AAAI Press,1996.
  • 4KARABOGA D.A novel clustering approach:artificial bee colony(ABC)algorithm[J].Applied Soft Computing Journal,2011,11(1):652-657.
  • 5ZHANG C,OUYANG D,NING J.An artificial bee colony approach for clustering[J].Expert Systems with Applications,2010,37:4761-4767.
  • 6KARABOGA D, BASTURK B. On the performance of arti- ficial bee colony (ABC) algorithm [ J ]. Applied Soft Com- puting, 2008,8 ( 1 ) :687-697.
  • 7PENEV K, LITTLEFAIR G , Free Search--a comparative analysis[ J ]. Information Sciences, 2005,172 ( 1 ) : 173- 193.
  • 8RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A.opposition-Based differential evolution [ J ]. IEEE Transac- tions on Evolutionary Computation , 2008,12 ( 1 ) :64-79.
  • 9KARBOGA D, BASTURK B. A powerful and efficient algo- rithm for numerical function optimization: artificial bee colo- ny (ABC) algorithm [ J ]. Journal of Global Optimization, 2007,39 ( 3 ) :459 -471.
  • 10TIAHOOSH H R. Opposition-based learning: a new scheme for machine intelligence [ C ]//Proceedings of International Computational Intelligence for Modeling Control and Auto- mation. Sydney, Australia, 2005 : 695-701.

共引文献192

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部