期刊文献+

基于空间深度置信网络的风速预测优化方法

The improvement of wind speed prediction using spatial deep belief network
下载PDF
导出
摘要 风能是目前应用最为广泛、技术最为成熟的可再生能源。为了保证风电场的稳定和安全运行,风速的准确预测至关重要。除传统的数值天气预报以外,机器学习技术已经广泛应用于不同时间尺度的风速预测。然而这些工作大多局限于单一地点的风速序列分析,没有考虑和利用风速的空间相关性。对此,使用深度置信网络(Deep Belief Network,DBN)对同一区域内多个地点的风速序列进行空间相关性特征识别。在训练过程中,深度置信网络充分挖掘了该区域内历史风速的联合分布,借此改善未来的风速预测。多组风速预测实验表明,空间深度置信网络能够有效降低风速的预测误差,经过空间深度置信网络重构后的风速预测误差平均降低了0.4 m/s。 Wind energy is the most widely used renewable energy.Accurate wind speed prediction is critical for the safety and stability of wind power system.Besides traditional numerical weather prediction,the machine learning technique has been used in wind speed prediction of different time scales.However,most previous studies focused on the wind speed sequence of single station and ignored the spatial dependency and correlation of wind.To improve the prediction with spatial information,this paper tries to extract the wind spatial correlation features in one region area and reconstruct the wind speed using deep belief network(DBN).The experiment results of different regions prove that the spatial deep belief network can reduce the prediction error significantly and increase the accuracy of wind speed prediction by 0.4 m/s on average.
作者 许皓宇 薛巍 张涛 谢洪亮 Xu Haoyu;Xue Wei;Zhang Tao;Xie Hongliang(Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China;Envision Energy Software Technology Limited,Shanghai 200050,China)
出处 《电子技术应用》 2022年第8期111-116,122,共7页 Application of Electronic Technique
基金 国家重点研发计划项目(2016YFA0602103)。
关键词 深度置信网络 风速预测 高斯过程回归 deep belief network wind speed prediction Gaussian process regression
  • 相关文献

参考文献1

二级参考文献11

  • 1Tenenbaum J B, Silva V de, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.
  • 2Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326.
  • 3Rahimi A, Recht B, and Darrell T. Learning to transform time series with a few examples [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1759-1775.
  • 4Wang Liang and Suter D. Learning and matching of dynamic shape manifolds for human action recognition [J]. IEEE Trans. on Image Processing, 2007, 16(6): 1646-1661.
  • 5Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
  • 6Zeng Xian-Hua, Luo Si-Wei, and Wang Jiao. Auto-associative neural network system for recognition [C]. Proceedings of the sixth international conference on machine learning and cybernetics, Hong Kong, 2007: 2885-2890.
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence. Neural Computation[J]. 2000, 14(8): 1771-1800.
  • 8Chen H and Murray A F. A continuous restricted Boltzmann machine with hardware-amenable learning algorithm [C]. Proceedings of 12th Int. Conf. on Artificial neural networks (ICANN2002), Madrid, Spain, 2002: 358-363.
  • 9Chen H and Murray A F. Continuous restricted Boltzmann machine with an implementable training algorithm [J]. IEE Proceedings of Vision, Image and Signal Processing, 2003, 150(3): 153-158.
  • 10Hinton G E. Training products of experts by minimizing contrastive divergence. London: Gatsby Computational Neuroscience Unit, Technical Report: GCNU TR 2000-004, 2000.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部