期刊文献+

基于氧化物固态电解质的储能钠电池的研究进展 被引量:3

Research progress of sodium energy storage batteries using oxide solid-state electrolytes
下载PDF
导出
摘要 规模储能是碳中和多能互补生态系统中的关键一环,是连接清洁能源和智能电网的桥梁,是保障国家能源安全的重要举措,其中先进的二次电池是关键的核心技术。由于兼顾高功率密度、资源丰富等优势,基于氧化物固态电解质的钠电池(OSSBs),尤其是以液态金属钠为负极的体系,已成为最有发展潜力和应用价值的规模储能技术之一。但是,目前的OSSBs在长循环稳定性、安全性和成本方面仍存在不足,阻碍其实际广泛应用。重要的是,如何在降低成本的同时,实现OSSBs中表界面电化学行为的有效调控及对储能性能的提升已经成为目前研究的重点。本文重点介绍了近年来OSSBs的研究进展,主要针对钠-硫电池和钠-金属氯化物电池等在内的典型体系,从OSSBs成本控制、运行温度降低以及应用可靠性优化等几个关键方面分析了国内外的发展,进而提出了对储能钠电池的未来展望。 Large-scale energy storage is a pivotal part of the carbon neutrality and multienergy complementation ecosystem,a bridge between clean energy and smart grid,and an important measure to ensure national energy security.The advanced secondary batteries are the key technology for large-scale energy storage.Sodium batteries based on oxide solid electrolytes(OSSBs),especially those with liquid metal sodium as the anode,are considered as one of the most promising and valuable grid-scale energy storage technologies owing to its high power density and abundant resources.However,there are still several shortcomings for OSSBs in terms of cycle stability,safety and cost,which prevent their practical applications.Importantly,strategies on how to effectively regulate the surface/interface electrochemical behavior of OSSBs and improve the energy storage performance while reducing the cost have become the focus of the current research.This review focuses on the research progress of OSSBs in recent years,mainly for the typical systems such as sodium-sulfur batteries and sodium-metal chloride batteries.We analyze the development of OSSBs from several key aspects,such as cost control,operating temperature reduction and application reliability optimization,and further propose the future prospects.
作者 王进芝 韩晓蕾 许超锋 赵井文 唐越 崔光磊 WANG Jinzhi;HAN Xiaolei;XU Chaofeng;ZHAO Jingwen;TANG Yue;CUI Guanglei(Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Qingdao 266101,Shandong,China;Shandong Energy Institute,Qingdao 266101,Shandong,China;Arizona State University,Tempe 85287,Arizona,USA)
出处 《储能科学与技术》 CAS CSCD 北大核心 2022年第9期2834-2846,共13页 Energy Storage Science and Technology
基金 国家自然科学基金项目(22139001,21975271) 山东省自然科学基金重大基础研究项目(ZR2020ZD07) 山东能源研究院创新基金(SEI I202127) 中国科学院青年创新促进会(2019214)。
关键词 大规模储能 高温钠电池 钠硫电池 钠-金属氯化物电池 Zebra电池 large-scale energy storage high-temperature sodium battery sodium-sulfur battery sodium-metal chloride battery Zebra battery
  • 相关文献

参考文献7

二级参考文献51

  • 1曹佳弟.电动汽车用ZEBRA(钠/氯化镍)电池发展现状[J].电池工业,1999,4(6):221-225. 被引量:5
  • 2COETZER J. A new high energy density battery system[J]. Journal of Power Sources, 1986, 18: 377-386.
  • 3DUSTMANN C H. Advances in ZEBRA batteries [J]. Journal of Power Sources, 2004, 127: 85-92.
  • 4DUSTMANN C H, BITO A. Secondary batteries-high temperature systems safety[J]. Encyclopedia of Electrochemical Power Sources, 2009, 4: 324-333.
  • 5DUSTMANN C H. ZEBRA battery meets USABC goals[J]. Journal of Power Sources, 1998, 72: 27-31.
  • 6NOTTROTT A, KLEISSL J, WASHOM B.Energy dispatch scheduleoptimization and cost benefit analysis for grid- connected, photo-voltaic-battery storage systems [J]. Renewable Energy, 2013, 55:230-240.
  • 7LU X C, BRENT W, XU W, et al. Advanced intermediate-tempera-ture Na-S battery [J]. Energy and Environmental Science, 2013, 6(1):299-306.
  • 8LU X C, LI G S, KIM J Y,et al. The effects of temperature on theelectrochemical performance of sodium-nickel chloride batteries [I].Journal of Power Sources, 2012, 215: 288-295.
  • 9MICHAEL S, KIM D, LEE E, et al. Sodium-ion batteries [J]. Ad-vanced Functional Materials, 2013, 23(8): 947-958.
  • 10OSHIMA T, KAJITA M, OKUNO A. Development of sodium-sulfurbatteries [J].International Journal of Applied Ceramic Technology,2004, 1(2): 269-276.

共引文献17

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部