期刊文献+

基于视觉导引的固定翼无人机自主着陆算法研究 被引量:4

Autonomous Landing Algorithm of Fixed-Wing Unmanned Aerial Vehicle Based on Visual Guidance
原文传递
导出
摘要 研究了使用视觉导引系统进行固定翼无人机自主着陆时的相关问题,主要针对提高视觉导航系统获取导航参数的速度及精度展开研究。视觉导航系统获取参数分为两步:跑道检测识别、固定翼无人机相对位姿估计。提高导航系统参数获取速度,主要通过提高耗时较高的跑道检测识别算法的检测识别效率来完成。利用跑道在序列图像中的时空一致性进行候选区域提取,在不影响召回率的情形下减少无效候选区域,从而提高跑道检测效率,最终提高视觉导引系统获取导引参数的速度。为提高估计的导引参数精度,结合跑道上的点线特征进行位姿估计,通过增加可利用的特征数量来提高位姿估计精度。实验仿真结果表明,所提方法有效提高了视觉导航系统获取导航参数的速度及精度。 This paper studies the use of visual guidance system for autonomous landing of fixed-wing unmanned aerial vehicles(UAVs).The research is mainly aimed at improving the speed and accuracy of the visual navigation system to obtain the navigation parameters.The acquisition of parameters by the visual navigation system can be divided into two steps:runway detection and recognition,and relative pose estimation of fixed-wing UAVs.To improve the acquisition speed of navigation system parameters,we mainly improve the detection and recognition efficiency of the time-consuming runway detection and recognition algorithm.In this paper,the spatiotemporal consistency of the runway in the sequence image is used to extract candidate regions,and the invalid candidate regions are reduced without affecting the recall rate.Then the efficiency of runway detection is improved and ultimately the speed of the visual guidance system to obtain guidance parameters is improved.In order to improve the accuracy of the estimated guidance parameters,this paper combines the point and line features on the runway for pose estimation.That improves the pose estimation accuracy by increasing the number of available features.The experimental results show that the proposed method can effectively improve the speed and accuracy of the visual navigation system to obtain the navigation parameters.
作者 胡运强 曹云峰 庄丽葵 宋晓峰 Hu Yunqiang;Cao Yunfeng;Zhuang Likui;Song Xiaofeng(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China;College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第14期242-255,共14页 Laser & Optoelectronics Progress
基金 工业和信息化部空间光电探测与感知重点实验室开放项目基金(No.NJ202021-01) 中央高校基础研究基金(No.NJ2020021)。
关键词 机器视觉 固定翼无人机 自主着陆 跑道检测识别 位姿估计 machine vision fixed-wing unmanned aerial vehicle autonomous landing runway detection and recognition pose estimation
  • 相关文献

参考文献3

二级参考文献17

  • 1刘媛,姚剑,冯辰.一种高效的高分辨率遥感影像飞机目标检测方法[J].测绘地理信息,2020,45(1):95-100. 被引量:2
  • 2凌波,吴婧,叶秀清,顾伟康.最大熵原理在非结构化道路图像识别中的应用[J].电路与系统学报,2005,10(4):78-81. 被引量:5
  • 3Nan Di,Miag Zhu,Yinan Wang.Real Time Method for Airport Runway Detection in Aerial Images[C] //Audio,Language and Image Processing International Conference,2008:563-567.
  • 4DING Meng,CAO Yun-feng,GUO Lin.A Method to Recognize and Track Runway in the Image Sequences Based on Template Matching[c] //International Symposium on Systems and Control in Aerospace and Astronautics.2006:1218-1221.
  • 5Andrew Miller,Mubarak Shah,Don Harper.Landing a UAV on a Runway Using Image Registration[C] //IEEE International Conference on Robotics and Automation.2008:182-187.
  • 6McGee T G,Sengupta R,Hedrick K.Obstacle Detection for Small Autonomous Aircraft Using Sky Segmentation[C] //IEEE International Conference on Robotics and Automation,IEEE,2005:4679-4684.
  • 7Canny J.A Computational Approach To Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 8Mei Fang,Yue Guangxue,Yu Qingcang.The Study on an Application of Otsu Method in Canny Operator[C] //Proceeding of 2009 International Symposium on Information Processing,2009:109-112.
  • 9潘翔,马德强,吴贻军,张光富,姜哲圣.基于视觉着陆的无人机俯仰角与高度估计[J].浙江大学学报(工学版),2009,43(4):692-696. 被引量:11
  • 10戴陈卡,李毅.基于Faster RCNN以及多部件结合的机场场面静态飞机检测[J].计算机应用,2017,37(A02):85-88. 被引量:31

共引文献20

同被引文献18

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部