期刊文献+

基于假设气体法的燃气辐射特性计算模型 被引量:1

Fictitious gas-based model for calculating radiation characteristics of gas
下载PDF
导出
摘要 为了降低航空发动机排气系统高温燃气红外辐射特性的计算误差,发展了基于假设气体法的Malkmus统计窄谱带模型,并通过与逐线计算法的计算结果对比,验证了该模型的准确性。结果表明,基于假设气体法的Malkmus统计窄谱带模型能够显著降低非等温、非均匀高温燃气辐射特性参数的计算误差。在非等温、非均匀条件下,对CO_(2)-H_(2)O-N_(2)混合气体谱带平均透过率的计算结果表明,传统的Malkmus统计窄谱带模型的均方根误差为0.018,而基于假设气体法的Malkmus统计窄谱带模型的均方根误差为0.012,后者的计算误差相对前者降低了33.3%。 The classical Malkmus statistical narrow-band model was extended with a fictitious gas method to improve the numerical accuracy of the infrared radiation signature of high-temperature gas in aeroengine exhaust systems.In this study,the accuracy of the extended model and the classical Malkmus statistical narrow-band model were evaluated.The results show that the numerical accuracy of the classical Malkmus statistical narrowband model was improved significantly by the fictitious gas assumption,particularly for nonisothermal and nonhomogeneous gases.Compared with the line-by-line results,the root mean square error of the classical Malkmus statistical narrow-band model for the average band transmissivity of CO_(2)-H_(2)O-N_(2) mixture is 0.018,while the root mean square error of the fictitious gas-based Malkmus statistical narrow-band model is 0.012,which is reduced by 33.3% compared with the former.
作者 程稳 孙啸林 马姗 Cheng Wen;Sun Xiaolin;Ma Shan(College of Aviation Engineering,Civil Aviation Flight University of China,Guanghan 618307,China;College of Flight Technology,Civil Aviation Flight University of China,Guanghan 618307,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2022年第7期110-118,共9页 Infrared and Laser Engineering
基金 中国民用航空飞行学院科研基金(J2020-035,Q2020-075)。
关键词 假设气体法 燃气辐射 窄谱带模型 航空发动机 红外辐射 fictitious gas method gas radiation narrow-band model aero-engine infrared radiation
  • 相关文献

参考文献2

二级参考文献21

  • 1徐南荣,朱谷君.热空腔-喷气流的组合辐射[J].航空动力学报,1995,10(3):294-298. 被引量:28
  • 2西格尔R (美)豪厄尔JR.热辐射传热[M].北京:科学出版社,1990.261.
  • 3Modest M F. Radiative Heat Transfer [M]. 2nd ed. New York: Academic Press, 2003.
  • 4Chetwynd J H, Wang J. Anderson P G. Fast atmospheric signature CODE (FASCODE): an update and applications in atmospheric remote sensing[C]//SPIE, 1994, 2266: 613-623.
  • 5Berk A, Anderson G P, Bemstein L S, et al. MODTRAN4 radiative transfer modeling for atmospheric correction [C]// SPIE, 1999, 3756: 348-353.
  • 6Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2, and CO, and correlated-k model for H2O and CO2 [J]. International Journal of Heat and Mass Transfer, 1997, 4,0 (4): 987-991.
  • 7Ludwig C B. Handbook of infrared radiation from combustion gases [R]. NASA SP-3080, 1973.
  • 8Rothraan L S, Gordon I E, Bathe A, et al. The HITRAN08 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9-10): 533-572.
  • 9Rothman L S, Gordon I E, Barbe A, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150.
  • 10Modest M F, Bharadwaj S P. Medium resolution transmittance experiments of CO2 at high temperature [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73(2-5): 329-338.

共引文献24

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部