摘要
针对铜/不锈钢异种材料激光焊接过程中的物理性能差异较大、冶金相容性较差等问题,利用光学显微镜、扫描电子显微镜、能谱仪,结合拉伸、硬度等试验研究了不同光束偏移量对焊接接头组织及性能的影响。结果表明:焊缝在金属蒸发作用力及马兰戈尼对流效应的共同影响下呈半沙漏状形貌;光束偏向铜侧时,焊缝由于液相分离导致富铁相弥散分布,造成焊缝成分和硬度分布不均匀,熔覆金属中铜的含量较多使得接头强度较低;光束偏向钢侧时焊缝组织为奥氏体和富铜相,焊接接头的强度较高,抗拉强度最高可达240 MPa,与铜母材相当;当光束偏移量为-0.4 mm时,可得到综合性能最优的焊接接头。
The effect of various beam offsets on the microstructure and the properties of welded joints was studied using optical microscope, scanning electron microscope, and energy dispersive spectrometer, combined with tensile and hardness tests to investigate the challenges caused by large differences in physical properties and poor metallurgical compatibility in the laser welding of dissimilar materials such as copper/stainless steel. The results show that the weld is semi-hourglass shaped under the influence of an evaporation force and Marangoni convection effect. When the beam is biased towards the copper side, the iron-rich phase disperses in the weld due to the liquid phase separation, resulting in an uneven distribution of the weld composition and hardness. In addition, the more copper content in the deposited metal, the lower the joint strength. When the beam is biased towards the steel side, the microstructure of the weld is austenite with a copper-rich phase, and the strength of the welded joint increases. Moreover, the maximum tensile strength can reach240 MPa, equivalent to the copper base metal. Therefore, the best comprehensive performance of the welding joint can be obtained when the beam offset is-0. 4 mm.
作者
李继红
雷龙宇
杜明科
张云龙
张敏
史杰
高俊
Li Jihong;Lei Longyu;Du Mingke;Zhang Yunlong;Zhang Min;Shi Jie;Gao Jun(School of Materials Science and Engineering,Xi'an University of Technology,Xi'an 710048,Shaanxi,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2022年第13期311-318,共8页
Laser & Optoelectronics Progress
基金
国家自然科学基金(51974243)
中国博士后科学基金(2020M673449)
陕西省自然科学基础研究计划项目(2019JZ-31)
陕西省科技厅自然科学基础研究计划(2020JQ-637)
陕西省教育厅自然科学专项(19JK0590)。
关键词
激光技术
激光焊接
铜/钢复合结构
光束偏移
微观组织
力学性能
laser technique
laser welding
copper/steel composite structure
beam offset
microstructure
mechanical properties