期刊文献+

基于注意力机制的多尺度缺陷绝缘子检测算法 被引量:1

Multi-Scale Defect Insulator Detection Algorithm Based on Attention Mechanism
下载PDF
导出
摘要 绝缘子是保障输电线路平稳运行的重要电力部件之一。对于故障区域小、周围所处环境复杂的缺陷绝缘子检测是一项极具挑战性的任务,传统的检测方法存在精度不高、效率低和缺少大型公开数据集的问题。针对以上问题,提出一种基于注意力机制的多尺度缺陷绝缘子检测算法。在YOLOv3算法的基础上,使用K-means++匹配新的锚点坐标,将通道注意力机制SENet结构融入特征提取网络Darknet53中,增加多个检测尺度提升检测精度,并使用数据增强技术扩充缺陷绝缘子数据集。实验结果表明,上述方法在满足实时检测的要求下获得了94.42%的平均准确率和95.74%的召回率。 Insulators are one of the important power components to ensure the smooth operation of transmission lines,where the detection of defective insulators with small fault areas and complex environment is a challenging task.Nevertheless,traditional detection methods suffer from low accuracy,low efficiency,and lack of large public data sets.To address the above problems,a multi-scale defect insulator detection algorithm based on attention mechanism is proposed in this work.Based on YOLOv3 algorithm,K-means++was employed to match the new anchor coordinates,the channel attention mechanism SENet structure was integrated into feature extraction network Darknet53,multiple detection scales were added to improve detection accuracy,and the data augmentation technology was used to expand the data set of defect insulator.The experimental results show that the method achieves an average precision of 94.42%and a recall rate of 95.74%while still meets the requirements of real-time detection.
作者 种法广 温蜜 田英杰 张凯 CHONG Fa-guang;WEN Mi;TIAN Ying-jie;ZHANG Kai(College of Computer Science and Technology,Shanghai University of Electric Power,Shanghai 200090,China;State Grid Shanghai Municipal Electric Power Company,Shanghai 200122,China)
出处 《计算机仿真》 北大核心 2022年第7期137-142,147,共7页 Computer Simulation
基金 国家自然科学基金(61872230,U1936213,61802248) 上海市科委电力人工智能工程技术研究中心项目(19DZ2252800)。
关键词 目标检测 缺陷绝缘子 注意力机制 多尺度预测 Object detection Defect insulators Attention mechanism Multi-scale prediction
  • 相关文献

参考文献7

二级参考文献72

  • 1孙雅明,王俊丰.基于分形理论的输电线路故障类型识别新方法[J].电力系统自动化,2005,29(12):23-28. 被引量:25
  • 2Freeman W T, Roth M. Orientation Histograms for Hand Gesture Recognition[C]//Proc. of International Workshop on Automatic Face and Gesture Recognition. Zurich, Switzerland: [s. n.], 1995.
  • 3Mikolajczyk K, Schmid C. Scale and Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision, 2004, 60(1): 63-86.
  • 4David G L. Distinctive Image Features from Scaleinvariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 5Navneet D, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//Proc. of CVPR'05. San Diego, USA: [s. n.], 2005.
  • 6Yi Yang, Ramanan D. Articulated Pose Estimation with Flexible Mixtures-of-parts[EB/OL]. (2011-11-21). http:// vision.ics .uci.edu/papers/YangR_CVPR_2011/.
  • 7Sapp B, Toshev A, Taskar B. Cascaded Models for Articulated Pose Estimation[EB/OL]. (2010-11-21). http://vision. grasp.upenn.edu/cgi-bin/index.php?n=VideoEearning.Casc adedModelsForArticulatedPoseEstimation.
  • 8Moeslund T, Hilton A, Sigal L. Visual Analysis of Humans[M]. [S. l.]: Springer, 2011.
  • 9Felzenszwalb P F, Girshick R B, McAllester D, et al. Object Detection with Discriminatively Trained Part Based Models[J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
  • 10Doersch C. Improving the HoG Descriptor[EB/OL]. (2012-01-21). http://www.cs.cmu.edu/-cdoersch/proj ects/ hogimprove/.

共引文献137

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部