期刊文献+

引入注意力机制的AdaBoost算法 被引量:2

An AdaBoost Algorithm with Attention Mechanism
下载PDF
导出
摘要 为了解决原始AdaBoost算法对弱分类器的权重无法动态调整以及对多次分类错误的样本设置过高权重的问题,提出引入注意力(Attention)机制的AdaBoost算法。首先将所有样本输入到第一个注意力层,利用神经网络为每个样本打分,然后将所有弱分类器输入到第二个注意力层,同样利用神经网络为弱分类器打分,从而实现对弱分类器权重的动态调整,并最终得到一组最优权重。通过在损失函数上引入关于样本权重的L2正则项,并对正则项系数进行调整来解决AdaBoost算法对多次分类错误样本设置过高权重的问题。通过在四个公开数据集上与文献中提出的其它改进AdaBoost算法进行比较,发现其在准确率上优于其它改进算法。 The original AdaBoost algorithm cannot dynamically adjust the weights of the weak classifiers and sets too high weights for samples with multiple misclassifications.In order to tackle the above problems,a new algorithm is proposed by introducing the Attention mechanism into the design of AdaBoost.First,all samples are put into the first Attention layer,and each sample is scored with a neural network.Then all weak classifiers are put into the second Attention layer,and the weak classifiers are also scored with another neural network.In this way,the weights of the controller can be adjusted dynamically and a set of optimal weights can be finally obtained.Moreover,an L2 regularization term of sample weights is introduced into the loss function to avoid excessively high weights for samples that are multi-misclassified.The proposed algorithm exhibited superiority over other improved AdaBoost algorithms in accuracy when performing simulations on four public datasets.
作者 缪泽鑫 张会生 任磊 MIAO Ze-xin;ZHANG Hui-sheng;REN Lei(College of Information Science and Technology,Dalian Liaoning 116026,China;College of Science,Dalian Maritime University,Dalian Liaoning 116026,China)
出处 《计算机仿真》 北大核心 2022年第7期337-341,共5页 Computer Simulation
基金 国家自然科学基金(61671099)。
关键词 算法 注意力机制 神经网络 Algorithm Attention mechanism Neural network
  • 相关文献

参考文献4

二级参考文献66

  • 1马勇,丁晓青.Real-Time Multi-View Face Detection and Pose Estimation Based on Cost-Sensitive AdaBoost[J].Tsinghua Science and Technology,2005,10(2):152-157. 被引量:4
  • 2Robert E S. Theoretical views of boosting[C]// Proceedings of European Conference on Computational Learning Theory. Nordkirchen, Germany : Springer-Verlag, 1999 : 1 - 10.
  • 3Thomas G D. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization [J].Machine Learning, 2000, 40(2): 139- 157.
  • 4Robert E S. The boosting approach to machine learning: an overview[C]// MSRI Workshop on Nonlinear Estimation and Classification. Berkeley, CA, USA: Springer-Verlag, 2002.
  • 5Paul A V, Michael J J. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA: IEEE Computer Society, 2001: 511-518.
  • 6HUANG Chang, AI Haizhou, LI Yuan, et al. High-performance rotation invariant multiview face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 671- 686.
  • 7Llew M, Jonathan B, Peter L B, et al. Boosting algorithms as gradient descent [C]// Proceedings of Advances in Neural Information Processing Systems. USA: MIT Press, 1999: 512-518.
  • 8LI Ling. Data Complexity in machine learning and novel classification algorithms[D]. USA: California Institute of Technology, 2006.
  • 9Matti A, Jorma L. Using diversity of errors for selecting members of a committee classifier [J]. Pattern Recognition, 2006, 39(4) : 608- 623.
  • 10Ludmila I K. Diversity in multiple classifier systems [J].Information Fusion, 2005, 6(1): 3-4.

共引文献350

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部