摘要
采用粒子群算法识别结构损伤时,取得的实际最优解易被局部最优解覆盖。将局部最优解用于结构损伤识别,致使产生识别结果精度低、误判率高等问题。将S型动态变化的学习因子c_(1)和c_(2)引入到粒子群算法中,可使粒子快速、准确地收敛到全局最优解。该方法通过优化个体粒子和群体粒子的学习能力,有效提高了粒子群的寻优效率,实现了结构损伤的高精度识别。数值模拟结果表明:提出的新方法在结构损伤识别方面具有识别精度高、误判少、鲁棒性好等优点,可用于结构单一单元损伤或多单元损伤的识别。研究成果为结构损伤识别及结构健康监测提供了新思路。
During identifying structural damage with the particle swarm optimization algorithm,the actual optimal solution is easily covered by the local optimal solution obtained.The identification results exhibit low accuracy and high misjudgment rate when the local optimal solution is used to identify structural damage.By introducing learning factors c_(1) and c_(2) of S-type dynamic change,the animproved particle swarm algorithm is proposed to identify structural damage,which enables the particles to converge to the global optimal solution quickly and accurately.The optimization ability of the particle swarm of the presented method is effectively improved by improving the learning ability of individual particle and swarm particles,and the high-precision identification of structural damage is realized.The results indicate that the method exhibits the advantages of high identification accuracy,less misjudged damage and strong robustness in the process of structural damage identification.It can be applied to the identification of single damage and multiple damages of structure.The results can provide new ideas for structural damage identification and structural health monitoring.
作者
陈震
王亚茹
陈璐
李晓克
CHEN Zhen;WANG Yaru;CHEN Lu;LI Xiaoke(School of Civil Engineering and Communication,North China University of Water Resources and Electric Power,Zhengzhou 450045,China;China Construction Seventh Engineering Division Co.,Ltd.,Zhengzhou 450004,China)
出处
《华北水利水电大学学报(自然科学版)》
北大核心
2022年第4期43-47,75,共6页
Journal of North China University of Water Resources and Electric Power:Natural Science Edition
基金
国家重点研发计划资助项目(2017YFC0703900)
国家自然科学基金项目(U2004184)
河南省高等学校青年骨干教师培养计划项目(2021GGJS078)
华北水利水电大学硕士研究生创新基金项目(YK2020-15)。
关键词
结构损伤识别
学习因子
粒子群算法
多损伤
数值模拟
structural damage identification
learning factors
particle swarm optimization
multiple damages
numerical simu-lation