期刊文献+

卷积神经网络在气体泄漏超声识别中的应用 被引量:6

Application of convolutional neural network in ultrasonic identification ofgas leakage
下载PDF
导出
摘要 为了克服现有气体泄漏检测方法的不足,提出一种基于卷积神经网络的气体泄漏超声信号识别方法。在设计卷积神经网络网络结构时,通过多次预训练确定网络层数、卷积核数目和尺寸、全连接层神经元数目。同时,选择Inception模块平衡网络宽度和深度,防止过拟合的同时提高网络对尺度的适应性。通过输气管道泄漏实验平台模拟工况中常见的阀门泄漏和垫片泄漏,利用短时傅里叶变换进行时频图表征,在此基础上,建立二分类模型和不同泄漏类型的三分类模型。结果表明,相比二分类模型,不同泄漏类型的三分类模型识别准确率有所降低,添加Inception模块可以有效提高三分类模型的性能。 In order to overcome the shortcomings of existing gas leakage detection methods,an ultrasonic signal recognition method of gas leakage based on convolutional neural network(CNN)was proposed.When designing the CNN network structure,the number of network layers,the number and size of convolution kernel and the number of fully connected layer neurons were determined by multiple pre-training.Meanwhile,Inception module was selected to balance the width and depth of the network,prevent overfitting and improve the adaptability of the network to scale.The valve leakage and gasket leakage in working conditions were simulated by the gas pipeline leakage experimental platform,and the short-time Fourier transform was used to characterize the time-frequency diagram.Based on this,two-class model and three-class model with different leakage types were established.The results show that compared with two-class model,the recognition accuracy of the three-class model with different leakage types is reduced,and the addition of Inception module can effectively improve the performance of the three-class model.
作者 韩鹏程 燕群 彭涛 宁方立 HAN Pengcheng;YAN Qun;PENG Tao;NING Fangli(Aircraft Strength Research Institute of China,Xi’an 710065,China;School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《应用声学》 CSCD 北大核心 2022年第4期602-609,共8页 Journal of Applied Acoustics
关键词 气体泄漏 卷积神经网络 时频图 Gas leakage Convolutional neural network Time-frequency diagram
  • 相关文献

参考文献2

二级参考文献9

  • 1Sandsten J, Weibring P, Edner H, et al. Real-time gas- correlation imaging employing thermal background radiation[J]. Opt Express, 2000(6) :92-103.
  • 2Cosofret B R, Marinelli W J, Ustun T E, et al. Passive infrared imaging sensor for standoff detection of methane leaks [C] // Proceedings of Optics East, International Society for Optics and Photonics. [S. 1. ] : SHE, 2004..93 - 99.
  • 3Naranjo E, Baliga S, Bernascolle P. IR gas imaging in an industrial setting[C]//Proceedings of SPIE Defense, Security, and Sensing, International Society for Optics and Photonics. [S. 1. ]: SPIE,2010:76610K-76610K-8.
  • 4Hagen N, Kester R T, Morlier C G, et al. Video-rate spectral imaging of gas leaks in the longwave infrared [C] // Proceedings of SPIE Defense, Security, and Sensing, International Society for Optics and Photonics. [S. 1. ]. SPIE,2013: 871005-871005-7.
  • 5Benson R, Madding R, Lucier R, et al. Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager [ C]// Proceedings of AWMA 99th Annual Meeting.[S. 1. ]. AWMA, 2006:131.
  • 6Lloyd J M. Thermal imaging systemEM2. [S.1.]: Plenum Press, 1975.
  • 7谭雨婷,李家琨,金伟其,王霞.气体泄漏的单点探测器与红外成像检测的灵敏度模拟分析[J].红外与激光工程,2014,43(8):2489-2495. 被引量:9
  • 8刘翠伟,李雪洁,李玉星,刘光晓,钱昊铖,曹鹏飞.基于音波法的输气管道泄漏检测与定位[J].化工学报,2014,65(11):4633-4642. 被引量:26
  • 9周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. 被引量:1790

共引文献24

同被引文献48

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部