期刊文献+

基于结构保持的星载SAR图像超分辨重构算法

Structure-Preserving Super Resolution Network for Spaceborne Synthetic Aperture Radar Images
下载PDF
导出
摘要 星载合成孔径雷达(SAR)可以实现全天候、全天时、大幅宽的对地观测,但受天线尺寸和数据有损传输影响,高分辨率SAR图像的获取十分困难。针对该问题,提出一个基于结构保持的图像超分辨重构网络(SP-SRNet),以实现SAR图像从低分辨(LR)图像到高分辨(HR)图像的重构:使用一个轻量级深度卷积神经网络提取图像梯度图特征,为超分辨重构网络提供更多的结构信息;设计一个由像素损失和梯度损失组成的多目标函数优化SP-SRNet。利用ICEYE公司卫星高分辨SAR图像,采用双3次下采样算法构建SAR图像的LR-HR数据集,并在该数据集运用多种现有算法对比仿真验证。结果表明,提出的SP-SRNet在定量评估指标和主观视觉上均优于现有的超分辨重构算法。 Space-borne synthetic aperture radar(SAR)can realize all-weather,all-day,wide earth observation,but it is very difficult to obtain high-resolution SAR images due to the influence of antenna size and lossy data transmission.To solve this problem,an image super-resolution reconstruction network based on structure preservation(SP-SRNet)is proposed to reconstruct SAR images from low-resolution(LR)images to high-resolution(HR)images.A lightweight deep convolution neural network is used to extract image gradient features,which provides more structural information for the superresolution reconstruction network.A multi-objective function composed of pixel loss and gradient loss is designed to optimize SP-SRNet.The LR-HR data set of SAR image is constructed by using the satellite high-resolution SAR image of ICEYE company and bicubic downsampling algorithm.The results show that the proposed SP-SRNet is superior to the existing super-resolution reconstruction algorithm in quantitative evaluation index and subjective vision.
作者 许益乔 张刚 张占月 李雪薇 XU Yiqiao;ZHANG Gang;ZHANG Zhanyue;LI Xuewei(Space Engineering University,Beijing 101416,China;Beijing Institute of Remote Sensing Information,Beijing 100192,China;Institute of Software Chinese Academy of Sciences,Beijing 100190,China)
出处 《信息工程大学学报》 2022年第2期148-154,共7页 Journal of Information Engineering University
基金 全军军事类研究生资助课题项目(JY2019C206)。
关键词 星载合成孔径雷达 图像超分辨 深度卷积神经网络 结构保持 spaceborne synthetic aperture radar image super-resolution deep convolutional neural network structure-preserving
  • 相关文献

参考文献3

二级参考文献34

  • 1唐伶俐,江平,戴昌达.星载SAR图象斑点噪声消除方法效果的比较研究[J].环境遥感,1996,11(3):206-211. 被引量:18
  • 2尤红建,付琨.合成孔径雷达图像精准处理[M].北京:科学出版社,2011:2.
  • 3Evans T L and Costa M. Landcover classification of the lower nhecolandia subregion of the brazilian pantanal wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery[J]. Remote Sensing of Environment, 2013, 128: 118-137.
  • 4Refice A, Capolongo D, Lepera A, et al.. SAR and InSAR for flood monitoring: examples with COSMO/SkyMed data[C]. IEEE Geoscience and Remote Sensing Symposium, Melbourne, VIC, 2013: 703-706.
  • 5Federica B, Luigi T, Claudio P, et al.. Shoreline detection: capability of COSMO-SkyMed and high-resolution multispectral images[J]. European Journal of Remote Sensing, 2013, 46: 837-853.
  • 6Liao M, Jiang L, Lin H, et al.. Urban change detection based on coherence and intensity characteristics of SAR imagery[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(8): 999-1006.
  • 7Gong M, Li Y, Jiao L, et al.. SAR change detection based on intensity and texture changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 93(7): 123-135.
  • 8Dierking W and Skriver H. Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 618-636.
  • 9Lefort A, Grippa M, Walker N, et al.. Change detection across the Nasca pampa using spaceborne SAR interferometry[J]. International Journal of Remote Sensing, 2004, 25(10): 1799-1803.
  • 10Bazi Y, Bruzzone L, and Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 874-887.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部