期刊文献+

面向能量受限工业物联网设备的联邦学习资源管理 被引量:4

Federated learning resource management for energy-constrained industrial IoT devices
下载PDF
导出
摘要 针对工业物联网联邦学习网络中由设备电池能量有限导致的设备失效、训练中断等问题,并考虑到无线资源受限的影响,提出一种动态的多维资源联合管理算法。首先,以最大化固定训练时间学习精度为目标,将优化问题解耦为相互依赖的电池能量分配子问题、设备资源分配子问题和通信资源分配子问题。其次,基于粒子群优化算法求解能耗预算下设备传输和计算资源分配策略。再次,提出资源块迭代匹配算法求解出最佳通信资源分配策略。最后,提出在线能量分配算法动态调整设备能量分配策略。仿真结果表明,与基准算法相比,所提算法能够提高模型学习精度,在能源不足场景下性能优势更明显。 Given the impact of limited wireless resources,a dynamic multi-dimensional resource joint management algo-rithm was proposed,which intended to tackle the problem of device failure and training interruption caused by the limited battery energy in federated learning network in industrial Internet of things(IIoT).Firstly,the optimization problem was decoupled into battery energy allocation,equipment resource allocation and communication resource allocation sub-problems which were interdependent with the goal of maximizing the fixed-time learning accuracy.Then,the equip-ment transmission and computing resource allocation problem were solved based on particle swarm optimization algo-rithm under the given energy budget.Thereafter,the resource block iterative matching algorithm was proposed to optim-ize the optimal communication resource allocation strategy.Finally,the online energy allocation algorithm was proposed to adjust the energy budget allocation.Simulation results validate the proposed algorithm can improve the model learning accuracy compared with other benchmarks,and can perform better in energy shortage scenarios.
作者 范绍帅 吴剑波 田辉 FAN Shaoshuai;WU Jianbo;TIAN Hui(State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《通信学报》 EI CSCD 北大核心 2022年第8期65-77,共13页 Journal on Communications
基金 国家重点研发计划基金资助项目(No.2020YFB1807800)。
关键词 联邦学习 电池供电 资源分配 学习效率 federated learning battery-powered resource allocation learning efficiency
  • 相关文献

参考文献3

二级参考文献15

  • 1CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.
  • 2LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Trans. Automat. Contr., 1983, 28(12): 1 066-1 074.
  • 3GASPARETTO A, ZANOTTO V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (6): 415-426.
  • 4SHILLER Z. Time-energy optimal control of articulated systems with geometric path constraints[J]. Trans. ASME J. Dynam. Syst. Meas. Control, 1996, 118: 139-143.
  • 5SARAMAGO S F P, STEFFEN V J R. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J]. Mech. Math. Theory, 1998, 33(7): 883-894.
  • 6SARAMAGO S F P, STEFFEN V J R. Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J]. Mech. Math. Theory, 2000, 35(8): 1 079-1 094.
  • 7CHETTIBI T, LEHTIHET H E, HADDAD M, et al. Minimum cost trajectory planning for industrial robots[J]. European Journal of Mechanics A/Solids, 2004, 23(3): 703-715.
  • 8LUO X, FAN X P, ZHANG H, et al. Integrated optimization of trajectory planning for robot manipulators based on intensified evolutionary programming[C]//Proc. International Conference on Robotics and Biomimetics, Shenyang, China. Los Angeles: IEEE, 2004: 546-551.
  • 9PIAZZI A, VISIOLI A. Global minimum-time trajectory planning of mechanical manipulators using interval analysis[J]. Int. J. Control, 1998, 71(4): 631-652.
  • 10RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(9): 284-294.

共引文献235

同被引文献29

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部