期刊文献+

基于深度强化学习的可见光定位通信一体化功率分配研究 被引量:1

Research on power allocation of integrated VLPC based on deep reinforcement learning
下载PDF
导出
摘要 为了实现定位通信一体化功率分配,提出了一种基于深度强化学习的可见光定位通信(VLPC)一体化系统的功率分配方案。首先,提出了定位通信一体化帧结构设计;其次,利用定位信息实现了信道状态信息的估计,并推导了定位误差的克拉美罗下界(CRLB);再次,阐明了定位精度和通信速率的内在耦合关系;最后,提出了基于深度确定性策略梯度的VLPC动态功率分配方案。仿真结果表明,所提方案可同时实现高精度定位和高速通信。 A power allocation scheme for integrated visible light position and communication(VLPC)system based on deep reinforcement learning was proposed to achieve power allocation for communication positioning integration.First,the frame structure design of integrated VLPC was proposed.Then the channel state information could be estimated by using the positioning information,and the CRLB of the positioning error was derived.Furthermore,the internal coupling relationship between positioning accuracy and communication rate was clarified.On this basis,a dynamic power alloca-tion scheme based on deep deterministic policy gradient was proposed.Simulation results show that the proposed scheme can simultaneously achieve high-precision positioning and high-speed communication.
作者 马帅 李兵 盛海鸿 谷荣妍 周辉 王洪梅 王悦 李世银 MA Shuai;LI Bing;SHENG Haihong;GU Rongyan;ZHOU Hui;WANG Hongmei;WANG Yue;LI Shiyin(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221000,China)
出处 《通信学报》 EI CSCD 北大核心 2022年第8期121-130,共10页 Journal on Communications
基金 中央高校基本科研业务费专项资金资助项目(No.2022QN1052) 江苏省自然科学基金资助项目(No.BK20221115) 中国矿业大学未来科学家计划基金资助项目(No.2022WLJCRCZL108)。
关键词 可见光定位通信一体化 克拉美罗下界 功率分配 强化学习 integrated VLPC Cramér-Rao lower bound power allocation reinforcement learning
  • 相关文献

参考文献2

二级参考文献8

共引文献92

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部