期刊文献+

人工智能在皮肤科中的应用 被引量:3

Application Progress of Artificial Intelligence in Dermatology
下载PDF
导出
摘要 人工智能(artificial intelligence,AI)属于计算机科学的一个分支,是研究和开发用于模拟、延伸和扩展人的智能的理论、方法和应用系统的一门技术。AI在图像分类领域取得较大进展,科学家们开发出众多能够识别皮肤病变的算法,并对其准确性进行了相应的研究。本文就AI在皮肤病诊断、分类、计量评估等方面的应用进行综述,并探讨了AI的局限性和伦理学问题。未来,在AI和医疗深入融合的时代,医疗工作者将利用和协同AI一起更好地为人类健康保驾护航。 Artificial intelligence(AI)is a branch of computer science.It is a technology of researching and developing theories,methods and applications simulating,extending and expanding human intelligence.Great progress has been made in the field of AI image classification,and scientists have developed many algorithms identifying skin lesions and conducted corresponding studies on their accuracy.We reviewed the applications of AI in skin disease diagnosis,classification,and evaluation,while discussed the limitations and ethical issues of AI.In the future,medical workers shall utilize and collaborate with AI to guard better human health in the era of deep integration of AI and medical care.
作者 李昂 崔勇 LI Ang;CUI Yong(Graduate School,Peking Union Medical College and Chinese Academy of Medical Sciences,Beijing 100730,China;Department of Dermatology,China-Japan Friendship Hospital,Beijing 100029,China)
出处 《中国皮肤性病学杂志》 CAS CSCD 北大核心 2022年第8期872-876,共5页 The Chinese Journal of Dermatovenereology
基金 北京市科技计划(Z191100007719001) 北京联影智能影像技术研究院基金(CRIBJQY202106)。
关键词 人工智能 卷积神经网络 皮肤疾病 皮肤肿瘤 Artificial intelligence Convolutional neural network Skin diseases Skin tumors
  • 相关文献

参考文献10

二级参考文献43

  • 1王鸿斌,张立毅,胡志军.人工神经网络理论及其应用[J].山西电子技术,2006(2):41-43. 被引量:34
  • 2杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15
  • 3MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 4MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 5李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 610 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 7Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 8Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 9Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 10Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.

共引文献2728

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部