摘要
新型冠状病毒肺炎(新冠肺炎)病毒奥密克戎变异株在欧美国家肆虐,德尔塔变异株在国内引起数次小规模暴发,对大型活动赛事期间的新冠肺炎传播风险进行模拟,从而提前做好人员、物资、隔离场所等各类保障工作尤为重要。本研究以北京2022年冬奥会为例,介绍使用数学模型对来华运动员、官员和其他奥运会利益相关方(简称“涉奥”)入境风险、闭环内风险和防控措施进行模拟。在2022年1月19日的模拟结果中,预估涉奥入境海关核酸检测产生的阳性病例数为357例(95%CI:153~568),实际来华涉奥病例数为323例;模拟冬奥会进入闭环内的“种子”病例数为195例(95%CI:43~335),实际闭环内检测病例数为212例。本研究展示了传染病数学模型在预防医学与公共卫生实际应用中的重要作用。
The SARS-CoV-2 Omicron variant is rampant in Europe and the United States,and the Delta variant has caused several small-scale outbreaks in China.It is particularly important to simulate the transmission risk of novel coronavirus pneumonia(COVID-19)during large-scale events,so as to ensure a good preparation of personnel,materials,isolation sites and other support work in advance.Taking the Beijing 2022 Winter Olympic Games as an example,this study introduces the use of mathematical models to simulate the entry risks,closed-loop risks and prevention and control measures of athletes,officials and other stakeholders of the Olympic Games.In the simulation results on January 19,2022,the estimated number of Olympic Games-related infections who were identified at borders was 357(95%CI:153-568)and the observed number was 323.The estimated number of"seed"cases that entered the closed-loop of Olympics Games was 195(95%CI:43-335),and the observed number of cases in the closed-loop was 212.This study demonstrates the important role of mathematical models of infectious diseases in the pragmatic application of preventive medicine and public health.
作者
王瑞雪
王增淼
田怀玉
Wang Ruixue;Wang Zengmiao;Tian Huaiyu(Center for Global Change and Public Health,State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing 100875,China;School Of National Safety And Emergency Management,Beijing Normal University,Beijing 100875,China)
出处
《中华预防医学杂志》
CAS
CSCD
北大核心
2022年第8期1055-1061,共7页
Chinese Journal of Preventive Medicine
基金
科技创新2030-“新一代人工智能”重点课题(2021ZD0111201)
国家重点研究发展计划(2021YFC0863400)
中央高校基本科研业务费专项资金(2021NTST17)
国家自然科学基金(82073616)
军队后勤科研重大项目
北京高精尖学科“陆地表层学”项目
内蒙古自治区科技重大专项(2021ZD0006)
遥感科学国家重点实验室开放基金项目(OFSLRSS202106)。