摘要
分别就非滑动式算法及滑动式算法中Lagrange插值法及Chebyshev拟合法的插值精度情况进行研究,并探究了插值阶次对于插值精度的影响情况。结果表明:1)滑动式算法可以有效削弱低阶次插值过程中的误差,对高阶次插值过程中的误差可以近乎完全消除。2)Lagrange插值法及Chebyshev拟合法在非滑动式算法以及滑动式算法低阶次插值过程中,插值精度基本相同。但在高阶次插值过程中滑动式Lagrange插值法插值精度略高于滑动式Chebyshev拟合法。
The interpolation accuracy of Lagrange interpolation method and Chebyshev fitting method in non-sliding algorithm and sliding algorithm is studied respectively,and the influence of the interpolation order on the interpolation accuracy is explored.The results show that:(1)The sliding algorithm can effectively reduce the errors in the low-order interpolation process,and can almost completely eliminate the errors in the high-order interpolation process.(2)The interpolation accuracy of Lagrange interpolation method and Chebyshev fitting method is basically the same in the low-order interpolation process of non-sliding algorithm and sliding algorithm.However,the interpolation accuracy of sliding Lagrange interpolation method is slightly higher than that of sliding Chebyshev fitting method in the process of higher order interpolation.
作者
张朋帅
宋明洋
杨帆
王丽娟
鲍雅君
ZHANG Pengshuai;SONG Mingyang;YANG Fan;WANG Lijuan;BAO Yajun(School of Environment and Surveying Engineering,Suzhou University,Suzhou 234000,China)
出处
《测绘与空间地理信息》
2022年第8期54-56,共3页
Geomatics & Spatial Information Technology
基金
国家级大学生创新创业训练计划项目(202010379058)
安徽省大学生创新创业训练计划项目(201910379140,S202010379043)
宿州学院第十三届大学生科研立项(KYLXYBXM20-058)资助。