期刊文献+

羧基化纳米纤维素直接书写打印摩擦纳米发电机的研究

Research on the Direct Ink Writing of Triboelectric Nanogenerator with Carboxylated Cellulose Nanofibers
下载PDF
导出
摘要 本研究利用氧化-高压均质法,以桉木漂白硫酸盐浆为原料,2,2,6,6-四甲基哌啶氧化物(TEMPO)作为催化剂,通过改变次氯酸钠(NaClO)添加量制备不同羧基含量的纳米纤维素(CNF)水凝胶,再添加羧甲基纤维素钠(CMC)制备出用于直接书写(DIW)打印正极摩擦层的墨水,研究了羧基含量对摩擦纳米发电机(TENG)正极摩擦层强度和电学性能的影响。结果表明,CNF的羧基含量随着NaClO添加量的增加而逐渐提高,当NaClO添加量为12mmol/g时,打印出的正摩擦层结构稳定,内部片层结构均匀,具有蜂窝状气孔,机械性能优异。与聚二甲基硅氧烷(PDMS)制备的负摩擦层组装的TENG,开路电压和短路电流分别达到了208V和33.7nA。 In this study,CNF hydrogels with different carboxyl content were prepared by changing the amount of NaClO using oxidation-high pressure homogenization method with eucalyptus bleached kraft pulp as raw material and TEMPO as catalyst.An ink for DIW positive friction layer was prepared by adding CMC.The influence of carboxyl content on the strength and power generation performance of the positive tribolayer of the TENG was studied.The results showed that the carboxyl content of CNF is increased with the increase of NaClO content,when the amount of NaClO is 12mmol/g,the printed positive friction material has stable structure,uniform internal lamellar structure and honeycomb-like pores,excellent mechanical properties.The open-circuit voltage and short-circuit current of the TENG assembled with PDMS negative friction layer were 208V and 33.7nA,respectively.
作者 李海龙 王斌斌 张正健 高萌 魏雨 LI Hai-long;WANG Bin-bin;ZHANG Zheng-jian;GAO Meng;WEI Yu(College of Light Industry and Engineering,Tianjin University of Science and Technology,Tianjin 300457,China)
出处 《数字印刷》 CAS 北大核心 2022年第4期180-189,共10页 Digital Printing
基金 天津市自然科学基金(No.18JCQNJC76800) 天津市教委科研计划(No.2018KJ096,No.2018KJ095) 大学生创新训练计划项目(No.202110057278)。
关键词 纳米纤维素 羧甲基纤维素纳 直接书写 摩擦纳米发电机 Cellulose nanofibers Carboxymethyl cellulose DIW TENG
  • 相关文献

参考文献4

二级参考文献26

  • 1邱文龙,王仲孚,黄琳娟.2,2,6,6-四甲基哌啶氧自由基氧化糖类物质伯羟基研究进展[J].化学通报,2007,70(1):29-33. 被引量:22
  • 2Klemm D,Kramer F, Moritz S, et al. Nanocelluloses: A new femily of nature-based materia!s[J]. Angew Chem Int Edit, 2011,50(24): 5438-5466.
  • 3Eichhom S,Dufresne A, Aranguren M, et al. Review: Current international research into cellulose nanofibres andnanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33.
  • 4Bondeson D,Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acidhydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
  • 5Abe K, Iwamoto S,Yano H. Obtaining cellulose nanofibeis with aunifcHm width of 15 nm fiom wood[J]. Biomaamiolecules, 2007,8(10): 3276-3278.
  • 6Chen W, Yu H,Liu Y,et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combinedwith chemical pretreatments [J]. Carbohydrate Polymers, 2011, 83(4): 1804-1811.
  • 7Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in theelectronics device industry [J]. Advanced Materials, 2008, 20(10): 1849-1852.
  • 8Saito T, Kimura S,Nishiyama Y,et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J].Biomacromolecules, 2007, 8(8): 2485-2491.
  • 9FanY, Saito T, IsogaiA. Chitin nanociystals prepared by TEMPO-mediated oxidation of a-chitin[J]. Biomacromolecules, 2007,9(1): 192-198.
  • 10Fan Y,Saito T, Isogai A. TEMPO-mediated oxidation of p-chitin to prepare individual nanofibrils [J]. Carbohydrate Polymers,2009,77(4): 832-838.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部