期刊文献+

Energy-efficient resource management for CCFD massive MIMO systems in 6G networks 被引量:1

下载PDF
导出
摘要 This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期877-886,共10页 系统工程与电子技术(英文版)
基金 supported by the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072020GIP0803) Heilongjiang Province Key Laboratory Fund of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01) the National Natural Science Foundation of China(61571149) the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098) the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology。
  • 相关文献

参考文献4

二级参考文献32

  • 1A. Georgieva, I. Jordanov. Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. European Journal of Operational Research, 2009, 196(2): 413-422.
  • 2M. G de Carvalho, A. H. F. Laender, M. A. Goncalves, et al. A genetic programming approach to record deduplication. IEEE Trans, on Knowledge and Data Engineering, 2012, 24(3): 399-412.
  • 3K. S. Tang, K. F. Man, S. Kwong, et al. Genetic algorithms and their applications. IEEE Signal Processing Magazine, 1996, 13(6): 22-37.
  • 4J. Kennedy, R. Eberhart. Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks, 1995: 1942-1949.
  • 5D. Karaboga, B. Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459-471.
  • 6K. Chandrasekaran, S. P. Simon. Multi-objective unit commitment problem with reliability function using fuzzified binary real coded artificial bee colony algorithm. IET Generation, Transmission & Distribution, 2012, 6(10): 1060-1073.
  • 7C. Teixeira, J. Covas, T. Sttttzle, et al. Hybrid algorithms for the twin-screw extrusion configuration problem. Applied Soft Computing, 2014, 23: 298-307.
  • 8N. Karaboga. A new design method based on artificial bee colony algorithm for digital HR filters. Journal of the Franklin Institute, 2009, 346 (4): 328-348.
  • 9R. Stom, K. Price. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012. Berkeley: International Computer Science Institute. 1995.
  • 10A. K. Qin, V. L. Huang, P. N. Suganthan. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans, on Evolutionary Computation,2009, 13(2): 398-417.

共引文献63

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部